Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Finite element moving mesh analysis of phase change problems with natural convection

Tenchev, R.T. and MacKenzie, J.A. and Scanlon, T.J. and Stickland, M.T. (2004) Finite element moving mesh analysis of phase change problems with natural convection. International Journal of Heat and Fluid Flow, 26 (4). pp. 597-612. ISSN 0142-727X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper discusses the application of an r- refinement, moving mesh technique for the solution of heat transfer problems with natural convection and phase change. The moving mesh technique keeps the number of elements and their connectivity fixed and clusters the nodes towards the phase change front at the expense of the solution of an extra differential equation. The governing differential equations describing the physical problem are modified to account for the mesh movement between time steps. The energy conservation equation uses the apparent heat capacity method to take into account the latent heat of phase change. The finite element discretization of all equations is presented. Several test problems are solved and the moving mesh FEM results are in a very good agreement with those in the published literature. The sensitivity of the results to variations of some user-definable computational parameters is found to be low, which means that the moving mesh method may be used without extensive previous experience. Its basic advantage is that less elements may be used to achieve accurate results.