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Abstract. Maxwell's equations governing the propagation of electro-magnetic �elds are
considered in conjunction with a class of material relations, which are capable of repre-
senting memory e�ects and time delay.
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1 INTRODUCTION

Maxwell's equations are usually given in the form

curl H − ∂0D = j ,

curl E + ∂0B = 0 ,

where curl is the usual vector-analytical di�erential operator and ∂0 denotes the derivative
with respect to time. The electric �eld is here denoted by E, D denotes the displacement
current density, H the magnetic �eld, B the magnetic induction and j a known current
density. In addition a non-linear and non-local material relation

(

D

B

)

= ζ

(

E

H

)

is assumed. The system can be written in the form

∂0

(

D

B

)

−M
(

E

H

)

=

(

−j
0

)

with

M :=

(

0 curl
−curl 0

)

.

A class of material relations of the form

∂0 ζ = ζ0 ∂0 + Φ,

completes the system. Here Φ is a non-linear abstract Volterra type operator (de�ned
later) and ζ0 linear. Under weak assumptions the solution theory of initial boundary
value problems for this system are considered in the frame work of extrapolation spaces
� see e.g. [7] for the general setting � associated with the time-derivative ∂0 as a normal
operator and a skew-selfadjoint realization A of the formal Maxwell operator ζ−1

0 M in a
suitably weighted space. The approach expands on ideas previously presented in [4].

2 Formulation of the Problem Class

2.1 Abstract Volterra Operators

By supp0 we shall denote the so-called time-support given by

supp0f :=
⋃

{

supp (φ 7→ f(φ⊗ η))
∣

∣ η ∈ H
}

for f in

(

◦

C∞(R)
a
⊗H

)′

, the linear space of complex linear functionals acting on the

algebraic tensor product
◦

C∞(R) ⊗
a
H, H a Hilbert space. Here φ 7→ f(φ ⊗ η) is the

obvious linear functional on
◦

C∞(R).
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De�nition 1 Let H0, H1 be Hilbert spaces and

W : D (W ) ⊆
(

◦

C∞(R) ⊗
a
H0

)′

→
(

◦

C∞(R) ⊗
a
H1

)′

.

If
inf supp0 (f − g) ≤ inf supp0 (W (f) −W (g)) (1)

for all f, g ∈ D (W ) then we shall call W causal.

Here we interpret inf supp0 f = +∞ if supp0f empty and inf supp0 f = −∞ if supp0 f

is not bounded below, so that (1) is only restrictive if we take f with supp0 f bounded
below.

For de�ning abstract Volterra operators we also need a suitable topology, which we shall
base on a discussion of properly established operators ∂0 and A. First we de�ne ∂0 :=
∂0,ν + ν, where the operator ∂0,ν is initially given as the closure of (∂0 − ν)

∣

∣ ◦
C∞(R)

a
⊗H0

considered as an operator in L2 (R, exp (−2νs) ds) ⊗H0.

Let A : D(A) ⊆ H0 → H0 be a densely de�ned, closed, linear operator with non-empty
resolvent set - say λ0 ∈ ρ(A). Then, the appropriate structure for discussing an operator
equation of the form

(∂0 − A)u = g ,

g ∈ H0 given, is the lattice of Hilbert spaces

(Hν,j,k)j,k∈Z
,

where Hν,j,k abbreviates the Hilbert space H(j,k) (∂0,ν + ν, A− λ0), which is given as the

completion of
◦

C∞(R) ⊗
a

⋂

s∈N
D (As) with respect to the norm

φ 7→
∣

∣

∣
(∂0,ν + 1)j (A− λ0)

k
φ
∣

∣

∣

ν,0,0

of Hν,0,0 = L2 (R, exp (−2νs) ds) ⊗ H0, j, k ∈ Z, ν ∈ R>0 (see [5, 7] for details of this
construction). We shall also use Hk as an abbreviation of Hk (A− λ0), k ∈ Z, which in
turn is the completion of

⋂

s∈N
D (As) with respect to the norm

φ 7→
∣

∣

∣
(A− λ0)

k
φ
∣

∣

∣

0
.

By construction ∂0 = ∂0,ν +ν and A extend continuously to operators mapping from Hν,j,k

to Hν,j−1,k and Hν,j,k−1, respectively, j, k ∈ Z. We shall use the same names for these
extensions. In the following, however, only the cases k = −1, 0, 1, j = −1, 0, 1 will be
relevant.
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De�nition 2 We shall call a family of operators (Φν : Hν,0,0 → Hν,0,0)ν∈R≥ν#
, ν# ∈ R>0,

an abstract Volterra operator if there is a causal operator

Φ :
◦

C∞(R) ⊗
a
H0 ⊆

(

◦

C∞(R) ⊗
a
H0

)′

→
(

◦

C∞(R) ⊗
a
H0

)′

satisfying the following requirements:

1. for the range of Φ we have

Φ

[

◦

C∞(R) ⊗
a
H0

]

⊆
⋂

ν≥ν#

Hν,0,0 ,

2. there is a constant C ∈ R such that

|Φ (u) − Φ (v)|ν,0,0 ≤ C |u− v|ν,0,0

for all u, v ∈
◦

C∞(R) ⊗
a
H0 and all ν ∈ R≥ν#

,

3. the mappings Φν : Hν,0,0 → Hν,0,0 are given as the (Lipschitz) continuous extension
of Φ the considered as a mapping in Hν,0,0, ν ≥ ν#.

Since all the Φν are generated by the same Φ, we shall write Φ instead of Φν , ν ∈ R≥ν#
,

leaving it again to the context, which particular ν is intended. In this sense we shall speak
of Φ as an abstract Volterra operator in Hν,0,0 for ν ∈ R≥ν#

.

2.2 On Skew-Selfadjoint Realizations of ζ−1
0 M

In order to turn ζ−1
0 M into a skew-selfadjoint operator, which in turn will then �ll the role

of the above operator A (with e.g. λ0 = −1), we �rst have to modify the inner product of
the complex Hilbert space (L2 (Ω) ⊕ L2 (Ω) ⊕ L2 (Ω))⊕ (L2 (Ω) ⊕ L2 (Ω) ⊕ L2 (Ω)), which
we shall denote simply by L2 (Ω), thus leaving here and in the following the number of
component spaces to be determined from the context. Here Ω is an open set in R

3 to
which we which to con�ne our considerations. The resulting Hilbert space will serve as
H0 and the appropriate inner product is simply given by

〈

φ
∣

∣η
〉

0
:=
〈

φ
∣

∣ζ0η
〉

L2(Ω)

for φ, η ∈ L2 (Ω), where
〈

·
∣

∣ ·
〉

L2(Ω)
denotes the standard inner product in L2 (Ω) (assumed

to be linear in the second factor). For this construction we assume that ζ0 : L2 (Ω) →
L2 (Ω) is a positive de�nite and continuous linear mapping. Thus, in particular, the norm
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| · |0 of H0 and the norm | · |L2(Ω) of L
2 (Ω) are equivalent and ζ

1/2
0 may be interpreted as a

unitary mapping between H0 and L2 (Ω), i.e. H0 = ζ
−1/2
0 L2 (Ω). By a simple integration

by parts argument it can now be seen that

ζ−1
0 M

∣

∣

∣ ◦
C∞(Ω)

is skew-symmetric in H0. Here
◦

C∞(Ω) abbreviates the subspace of

(

L2 (Ω) ⊕ L2 (Ω) ⊕ L2 (Ω)
)

⊕
(

L2 (Ω) ⊕ L2 (Ω) ⊕ L2 (Ω)
)

consisting of elements with components being in�nitely smooth functions having compact
support. Noting that this is equivalent to saying that M being skew-symmetric in L2 (Ω),
we also see that a skew-selfadjoint realization of ζ−1

0 M in H0 gives rise to one of M in
L2 (Ω) and vice versa. To �nd such a realization amounts to choosing a suitable boundary
condition. The standard choice of the boundary condition of vanishing tangential com-
ponents of the electric �eld E on smooth boundaries � on which we shall focus here � can

be generalized to the general case of boundary points
•

Ω of the open set Ω in the following
simple way. We require

E ∈ H(
◦

curl ),

where H(
◦

curl ) denotes the domain of the closure
◦

curl of the operator

curl
∣

∣ ◦
C∞(Ω)

:
◦

C∞(Ω) ⊆ L2 (Ω) → L2 (Ω) ,

φ 7→ curl φ .

Recall thatH(
◦

curl) is a Hilbert space with respect to the graph norm φ 7→
√

|φ|20 +

∣

∣

∣

∣

◦

curl φ

∣

∣

∣

∣

2

0

.

The symmetry of curl
∣

∣ ◦
C∞(Ω)

in L2 (Ω) motivates the de�nition of the operator

curl :=
(

curl
∣

∣ ◦
C∞(Ω)

)∗

with domain denoted by H(curl). With these de�nitions we have that M
∣

∣

H(
◦

curl )⊕H(curl)
as a skew-selfadjoint realization of M in L2 (Ω). Consequently, this yields

A := ζ−1
0 M

∣

∣

H(
◦

curl )⊕H(curl)

as a skew-selfadjoint realization of ζ−1
0 M in H0.
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2.3 The Evolution Problem

We are now able to formulate the law governing electro-magnetic �eld in the the particular
class of media considered here as

(∂0 − A) U = F + δ ⊗ U0 + Φ(U), (2)

The term δ ⊗ U0 ∈ Hν,−1,0 represents here initial data U0 at time zero and is de�ned by

(δ ⊗ U0) (ϕ⊗ h) := ϕ (0)
〈

U0

∣

∣h
〉

0

for all h ∈ H0, ϕ ∈
◦

C∞(R). In 2 it is assumed that Φ is an abstract Volterra operator in
Hν,0,0 and

F ∈ Hν,0,0 , supp0F ⊆ R≥0 , U0 ∈ H0 . (3)

for all ν ∈ R≥ν#
.

We recall now from [7] the following � slightly adapted � version of the linear solution
theory in the frame work of Sobolev lattices.

Theorem 3 Let ℜσ(A) be bounded above by ν# ∈ R\ℜσ(A), ν# ∈ R>0 , and for ν ≥ ν#

(λ+ ν − A)−1 : H0 → H0

is uniformly bounded for all λ ∈ R≥0 + ß R , and moreover

sup
{∥

∥(λ+ ν − A)−1
∥

∥

∣

∣λ ∈ R≥0 + ß R
}

= o(1) for ν → ∞. (4)

Then (∂0 − A) is continuously invertible in Hν,j,k ,
∥

∥(∂0 − A)−1 : Hν,j,k → Hν,j,k

∥

∥ = o(1) for ν → ∞
and

(∂0 − A)−1 : Hν,j,k → Hν,j,k

is (forward) causal for every ν ≥ ν# , j, k ∈ Z.

3 The Solution Theory

Theorem 4 Under the stated general assumptions problem (2) has for all su�ciently
large ν ∈ R≥ν#

a unique solution1 V ∈ Hν,0,0 , which depends continuously on the data
F and V0 in the sense that there is a constant C ∈ R>0 such that

|V1 − V2|ν,0,0 ≤ C
(

|F1 − F2|ν,0,0 + |V0,1 − V0,2|0
)

,

where Vi denotes the solution associated with the forcing term Fi and the initial data V0,i,
i = 1, 2.

1Note that the solution V does not depend on ν as long as ν is su�ciently large.
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Proof: The result follows by the obvious contraction mapping argument. Indeed, for
su�ciently large ν ∈ R≥ν#

the mapping Tν : Hν,0,0 → Hν,0,0 (note thatH0 → Hν,0,0, V0 7→
(∂0 − A)−1

δ ⊗ V0 ) given by

Tνφ := (∂0 − A)−1 (F + δ ⊗ V0 + Φ(φ))

is Lipschitz continuous with

|Tν |Lip ≤ sup
{∥

∥(λ+ ν − A)−1
∥

∥

∣

∣λ ∈ R≥0 + ß R
}

sup
{

|Φµ|Lip

∣

∣

∣µ ≥ ν
}

.

Since assumption (4) is clearly satis�ed in our case, indeed we have

sup
{∥

∥(λ+ ν − A)−1
∥

∥

∣

∣λ ∈ R≥0 + ß R
}

≤ 1

ν
,

the right-hand side can be made smaller than 1 for all su�ciently large ν. For such a
choice of the parameter ν ∈ R≥ν#

the mapping Tν becomes a contraction and the unique
existence of a �xed point V ∈ Hν,0,0 follows together with the continuous dependence
estimate. The �xed point V satis�es

V = TνV = (∂0 − A)−1 (F + δ ⊗ V0 + Φ(V )) .

Applying now (∂0 − A)
∣

∣

Hν,0,0
: Hν,0,0 ⊆ Hν,−1,−1 → Hν,−1,−1 (in the sense of the Sobolev

lattice construction above) to both sides we obtain (2). It remains to determine uniqueness
of a solution to (2). But if

(∂0 − A) V = F + δ ⊗ V0 + Φ(V )

then we have by applying (∂0 − A)−1 : Hν,−1,−1 → Hν,−1,−1

V = (∂0 − A)−1 (F + δ ⊗ V0 + Φ(V )) .

By the assumptions on V we see that the right-hand side is however just Tν and by
the uniqueness of a �xed point we obtain that the solution of (2) is unique in Hν,0,0 for
su�ciently large ν ∈ R≥ν#

. �

It is frequently desired that the data prior to the initial time zero are assumed to be
known, so that the actual solution of interest is of the form

U =

{

V on R>0

V−∞ on R≤0

with V−∞ = χ
R<0

(m0) V−∞ the given pre-history. The initial data are then induced by
assuming U to be continuous at zero, i.e.

V0 = V−∞ (0−) .

7
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This requires suitable assumptions on the pre-history to ensure the existence of this limit
and a match with the initial data, such as

ϕ (m0)
(

V−∞ + χ
R>0

(m0) ⊗ V0

)

∈ Hν,1,0 , (5)

where ϕ = ∂−1
0 ψ for some ψ ∈

◦

C∞(R<0), which we shall assume to hold throughout. Also
the other terms on the right-hand side usually contain some form of dependence on the
pre-history encoded as a modi�cation of F . In the next section we shall illustrate this in
more detail.

4 Applications

To illustrate the utility of the developed frame work let as look at several more speci�c
forms of material laws.

4.1 The Nimitzky Operator Case

Φ is induced by a Lipschitz continuous mapping

Γ : H0 → H0 ,

i.e.

Φ(V ) := t 7→ Γ(V (t))

for V ∈
◦

C∞(R)⊗
a
H0 . In this case there is clearly no dependence on the pre-history other

than the information encoded in the initial data.

4.2 Fixed Time Delay

If Φ is given in terms of s 7→ η(τ−t0φ(s)) with a �xed delay time t0 > 0 then the needed
uniform Lipschitz continuity is also easily seen:

|η (τ−t0φ0) − η (τ−t0φ1)|2ν,0,0 ≤ |η|2Lip

∫

R

|τ−t0φ0(s) − τ−t0φ1(s)|20 exp(−2νs) ds,

= |η|2Lip e
−2νt0

∫

R

|φ0(s) − φ1(s)|20 e−2νs ds,

≤ |η|2Lip |φ0 − φ1|2ν,0,0 ,

for all φ0, φ1 ∈ Hν,0,0. Here |η|2Lip is the best Lipschitz constant of η : H0 → H0. In this
case the pre-history can be taken into account by letting

Φ (V ) := χ
R>t0

(m0) η (τ−t0V ) + χ
[0, t0]

(m0) η (τ−t0V−∞)

8
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which can again be interpreted as a modi�cation of the source term F . Clearly, here only a
pre-history with time support in [0, t0] is relevant. To ensure that χ[0, t0]

(m0) η (τ−t0V−∞) ∈
Hν,0,0 we observe that

∣

∣

∣
χ

[0, t0]
(m0) η (τ−t0φ0) − χ

[0, t0]
(m0) η (τ−t0φ1)

∣

∣

∣

2

ν,0,0
≤

≤ |η|2Lip

∫ t0

0

|φ0 (t− t0) − φ1 (t− t0)|20 e−2ν t dt

≤ |η|2Lip

∫ 0

−t0

|φ0 (s) − φ1 (s)|20 e−2ν (s+t0) ds

= e−2ν t0 |η|2Lip

∫ 0

−t0

|φ0 (s) − φ1 (s)|20 e−2ν s ds

= e−2ν t0 |η|2Lip

∫ 0

−t0

|φ0 (s) − φ1 (s)|20 e−2ν0 s e−2(ν−ν0) s ds

≤ e−2 ν0 t0 |η|2Lip

∫ 0

−t0

|φ0 (s) − φ1 (s)|20 e−2ν0 s ds

for all φ0, φ1 ∈ Hν0,0,0, ν0 ∈ R≤ν . Thus, it su�ces to ensure that V−∞ ∈ Hν0,0,0 for some
ν0 ∈ R to obtain unique solvability and continuous dependence on the data (including the
pre-history) for all su�ciently large ν ≥ ν#.

4.3 The Volterra Integral Operator Case

This case has been dealt with in generality already in [4]. However, for illustration pur-
poses we recall the main arguments here. We take η : H0 → H0 to be Lipschitz continuous.
Then let Φ be given by

V 7→
∫

R≥0

K(· − s) η(V (s)) ds

such that
K(t) = 0 for t < 0 (K causal)

and
∫

R

‖K(t)‖ e−νKtdt <∞

for some νK ∈ R>0.

Here

|η|Lip

∫

R

‖K(t)‖ e−νKtdt <∞ (6)

9
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features the desired Lipschitz constant. Indeed, noting that e−2(ν−νK) (t−s) ≤ 1 for ν ≥ νK

and t ≥ s, we may estimate
∣

∣

∣

∣

∣

∫

R≥0

K(· − s) η(φ(s)) ds−
∫

R≥0

K(· − s) η(ψ(s)) ds

∣

∣

∣

∣

∣

ν,0,0

≤

≤ |η|Lip

√

√

√

√

∫

R≥0

(

∫

R≥0

‖K(t− s)‖ |φ(s) − ψ(s)|0 ds
)2

e−2ν t dt ≤

≤ |η|Lip

√

∫

R

‖K(t)‖ e−νKtdt

√

∫

R≥0

∫

R≥0

‖K(t− s)‖ e−νK (t−s) e−2(ν−νK) (t−s) dt |φ(s) − ψ(s)|20 e−2ν s ds ≤

≤ |η|Lip

∫

R

‖K(t)‖ e−νKtdt |φ− ψ|ν,0,0

for all φ, ψ ∈ Hν,0,0 uniformly in ν for ν ≥ νK . Assumption (K causal) yields causality.
If we would want to consider a dependence on the pre-history of the same form, i.e.

Φ (V ) = χ
R>0

(m0)

(

∫

R≥0

K(· − s) η(V (s)) ds+

∫

R<0

K(· − s) η(V−∞(s)) ds

)

then the desired uniform Lipschitz continuity is seen in the same way. Alternatively, the
term χ

R>0
(m0)

∫

R<0
K(· − s) η(V−∞(s)) ds could be considered merely as a modi�cation

of F . In any case we need the pre-history to be such that this term is in Hν,0,0. By an
analogous calculation we obtain

∣

∣

∣

∣

∣

χ
R>0

(m0)

∫

R<0

K(· − s) η(φ(s)) ds− χ
R>0

(m0)

∫

R<0

K(· − s) η(ψ(s)) ds

∣

∣

∣

∣

∣

ν,0,0

≤

≤ |η|Lip

√

√

√

√

∫

R≥0

(

∫

R<0

‖K(t− s)‖ |φ(s) − ψ(s)|0 ds

)2

e−2ν t dt ≤

≤ |η|Lip

√

∫

R

‖K(t)‖ e−νK tdt

√

√

√

√

∫

R<0

∫

R≥0

‖K(t− s)‖ e−νK (t−s) e−2(ν−νK) (t−s) e−2(ν−ν0) s dt |φ(s) − ψ(s)|20 e
−2ν0 s ds ≤

≤ |η|Lip

∫

R

‖K(t)‖ e
−νK t

dt

√

∫

R<0

|φ(s) − ψ(s)|20 e
−2ν0 s ds

for every ν0 ≥ νK as a Lipschitz type estimate for the pre-history. Thus we only have
to ensure that e.g. χ

R>0
(m0)

∫

R<0
K(· − s) η(0) ds ∈ Hν,0,0, which can be obtained if we

additionally assume η (0) = 0. Thus, the above general solution result applies. However,
here the additional question arises if the solution also depends continuously on the pre-
history. But since we may consider the term χ

R>0
(m0)

∫

R<0
K(· − s) η(V−∞(s)) ds as

part of F also this question has a positive answer according to the above Lipschitz type
estimate for the pre-history.

4.4 Delayed Reaction

In this case, which has also been brie�y considered in [4], we let Φ be based on a mapping
of the form f ◦ τ(·) , where

(τt ψ)(x) = ψ(x+ t)

10
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for t, x ∈ R for e.g. ψ ∈
◦

C∞(R) ⊗H0, and

f : Hν0,0,0 → H0

Lipschitz continuous for some ν0 ∈ R and

f = f ◦ χ
R≤0

(m0).

To take a non-trivial pre-history V−∞ into account, we let

Φ (ψ) = χ
R>0

(m0) f
(

τ(·)

(

χ
R>0

(m0)V + V−∞

))

.

The Lipschitz continuity of Φ follows now in the following way

∣

∣

∣
χ

R>0
(m0) f(τ(·) ϕ0) − χ

R>0
(m0) f(τ(·) ϕ1)

∣

∣

∣

2

ν,0,0
=

=

∫

R>0

|f (τt ϕ0) − f (τt ϕ1)|20 e−2ν t dt (7)

≤ |f |2Lip

∫

R>0

∫

R≤0

|ϕ0 (s+ t) − ϕ1 (s+ t)|20 e−2ν0 s ds e−2ν t dt

= |f |2Lip

∫

R>0

∫

R≤−t

|ϕ0 (s+ t) − ϕ1 (s+ t)|20 e−2ν0 s ds e−2ν t dt+

+ |f |2Lip

∫

R>0

∫

[−t, 0]

|ϕ0 (s+ t) − ϕ1 (s+ t)|20 e−2ν0 s ds e−2ν t dt

= |f |2Lip

∫

R>0

∫

R≤0

|ϕ0 (u) − ϕ1 (u)|20 e−2ν0 u du e−2(ν−ν0) t dt+

+ |f |2Lip

∫

R<0

∫

[−s,∞0]

|ϕ0 (s+ t) − ϕ1 (s+ t)|20 e−2ν (t+s) dt e−2(ν0−ν) s ds

≤ |f |2Lip

1

2 (ν − ν0)

(

∣

∣

∣
χ

R>0
(m0) (ϕ1 − ϕ2)

∣

∣

∣

2

ν,0,0
+
∣

∣

∣
χ

R≤0
(m0) (ϕ1 − ϕ2)

∣

∣

∣

2

ν,0,0

)

for all ϕ0, ϕ1 ∈
◦

C∞(R) ⊗ H0 and uniformly for � say � ν ≥ ν0 + 1. As a consequence
is Φ : χ

R≥0
(m0)Hν,0,0 → χ

R≥0
(m0)Hν,0,0 for a �xed pre-history V−∞ indeed (uniformly)

Lipschitz continuous

|Φ(V1) − Φ(V2)|ν,0,0 ≤
|f |Lip√

2
|V1 − V2|ν,0,0

for all Vi ∈ Hν,0,0, i = 1, 2, uniformly for all ν ≥ ν0 + 1 > ν0 . Moreover, we also
obtain continuous dependence on the pre-history, which follows with (7) by subtracting
corresponding �xed point equations and estimating.
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4.5 Material Laws given by Systems of Ordinary Di�erential Equations

Frequently, the material relation ζ is given via a separate system of di�erential equations,
see e.g. [1] for the case of Maxwell equations in ferro-magnetic media. More speci�cally
ζ(U) = U −W (U), where U 7→ W (U) is given as the solution of the system2:

∂0W = G0(U,W, I),
∂0 I = G1(U,W, I).

(8)

Thus, with a known pre-history V−∞ this3 turns into

∂0W = χ
R≥0

(m0)G0(V−∞ + χ
R≥0

(m0)V,W−∞ + χ
R≥0

(m0)W, I−∞ + χ
R≥0

(m0) I) + δ ⊗W−∞ (0−) ,

∂0 I = χ
R≥0

(m0)G1(V−∞ + χ
R≥0

(m0)V,W−∞ + χ
R≥0

(m0)W, I−∞ + χ
R≥0

(m0) I) + δ ⊗ I−∞ (0−) ,

where W−∞, I−∞ are the causal solutions4 � say � in Hν0,0,0, ν0 ∈ R>0, of the system

∂0W−∞ = G0(V−∞,W−∞, I−∞),
∂0 I−∞ = G1(V−∞,W−∞, I−∞)

restricted to R<0. The evolution problem now becomes

∂0V − AV = F + δ ⊗ V0 + Φ(V )

where

Φ(V ) := χ
R≥0

(m0)G0(V−∞ + χ
R≥0

(m0)V, π0L(V−∞ + χ
R≥0

(m0)V ), π1L(V−∞ + χ
R≥0

(m0)V ))

with U 7→ L (U) denoting the solution operator of the system (8) and π0, π1 the canonical

projectors on the components (i.e. π0

(

W

I

)

= W, π1

(

W

I

)

= I). Causality and a

uniform Lipschitz continuity of

(V,W, I) 7→ χ
R≥0

(m0)Gk(V−∞ + χ
R≥0

(m0)V,W−∞ + χ
R≥0

(m0)W, I−∞ + χ
R≥0

(m0) I) ,

in Hν,0,0 for k = 0, 1, ν ≥ ν#, is su�cient to ensure a suitable abstract Volterra operator
Φ. Note also thatW−∞ (0−) , I−∞ (0−) ∈ H0 are well-de�ned, sinceW−∞, I−∞ ∈ Hν0,1,0 .

2The component functions of I are referred to as interior variables.
3If the right-hand sides G0, G1 are e.g. of Nimitzky type and the initial state (W0, I0) is known (e.g.

directly from V−∞) the system simpli�es to solving

∂0W = χ
R≥0

(m0)G0(V,W, I) + δ ⊗W0 ,

∂0 I = χ
R≥0

(m0)G1(V,W, I) + δ ⊗ I0.

4In the more simple situation mentioned in the previous footnote only the initial data W0 and I0 are
relevant to represent the pre-history of W and I before time zero.
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There is an alternative view on this problem, which may be even more natural. We may
look for the solution V directly as the solution of the system




(∂0 −A) −∂0 0
0 ∂0 0
0 0 ∂0









V

W

I



 =





F + δ ⊗ V−∞ (0−)
G0(V−∞ + V,W−∞ +W, I−∞ + I) + δ ⊗W−∞ (0−)
G1(V−∞ + V,W−∞ +W, I−∞ + I) + δ ⊗ I−∞ (0−)



 .

The solution can now be given by a similar contraction argument involving the inverse
of the linear part





(∂0 − A) −∂0 0
0 ∂0 0
0 0 ∂0





−1

=





(∂0 − A)−1 (∂0 − A)−1 0
0 ∂−1

0 0
0 0 ∂−1

0



 ,

which can be estimated
∣

∣

∣

∣

∣

∣





(∂0 −A)
−1

(∂0 −A)
−1

0
0 ∂−1

0 0
0 0 ∂−1

0









F0

F1

F2





∣

∣

∣

∣

∣

∣

ν,0,0

≤ 1

ν
|F0|ν,0,0 +

2

ν
|F1|ν,0,0 +

1

ν
|F2|ν,0,0

≤ 2
√

3

ν

∣

∣

∣

∣

∣

∣





F0

F1

F2





∣

∣

∣

∣

∣

∣

ν,0,0

for all F0, F1, F2 ∈ Hν,0,0.

Even partial di�erential equations are used to describe media with memory. As a promi-
nent example we refer to the discussion of ferroelectric media, see e.g. [3, 2]. Such a
system is � after suitable adaptation � also covered by the above approach. With this last
observation we conclude our investigation into the described class of material relations.
Although, the results have been illustrated for electromagnetic �elds, which indeed has
been the main motivation for inspecting this type of material laws, it is clear from the
setup of the problem that these results transfer to a larger class of problems covering also
other evolution problems of mathematical physics.
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