Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A numerical method for solving three-dimensional generalised Newtonian free surface flows

Tomé, M.F. and Grossi, L. and Castelo, A. and Cuminato, J.A. and Mangiavacchi, N. and Ferreira, V.G. and De Sousa, F.S. and McKee, S. (2004) A numerical method for solving three-dimensional generalised Newtonian free surface flows. Journal of Non-Newtonian Fluid Mechanics, 123 (2-3). pp. 85-103.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This work presents a numerical technique for solving three-dimensional generalized Newtonian free surface flows. It is an extension to three dimensions of the technique introduced by Tomæ#169; et al. [M.F. Tomæ#169;, B. Duffy, S. McKee, A numerical technique for solving unsteady non-Newtonian free surface flows, J. Non-Newtonian Fluid Mech. 62 (1996) 9-34] but additionally includes many other features. The governing equations are solved by a finite difference method on a staggered grid. It uses marker particles to describe the fluid; these particles provide the location and visualization of the fluid free surface. As currently implemented, the present method can simulate generalized Newtonian flow in which the viscosity is modelled using the Cross model. The numerical technique presented in this paper is validated by using exact solutions for the flow of a Cross model fluid inside a pipe and convergence is demonstrated by means of grid refinement for the problem of a spreading drop. Numerical results showing the flow of a generalized Newtonian fluid jet impinging onto a flat surface and that of a jet buckling are given.