Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The stability of obliquely-propagating solitary-wave solutions to a modified Zakharov-Kuznetsov equation

Munro, S. and Parkes, E.J. (2004) The stability of obliquely-propagating solitary-wave solutions to a modified Zakharov-Kuznetsov equation. Journal of Plasma Physics, 70 (5). pp. 543-552.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the context of ion-acoustic waves in a magnetized plasma comprising cold ions and non-isothermal electrons, the present authors have previously shown small amplitude, weakly nonlinear waves to be governed by a modified version of the Zakharov-Kuznetsov equation. In this paper, we consider a plane solitary travelling-wave solution to this equation that propagates at an angle $alpha$ to the magnetic field, where $0,{le},alpha,{le},pi$. The multiple-scale perturbation method developed by Allen and Rowlands is used to calculate the growth rate of a small, transverse, long-wavelength perturbation. To first order there is instability for $0,{le},sinalpha,{<},sinalpha_{ m c}$, where the critical angle $alpha_{ m c}$ is identified. At second order, the singularity which apparently occurs in the growth rate at $alpha,{=},alpha_{ m c}$ is removed by using a method devised by Allen and Rowlands; then it is found that there is also instability for $sinalpha,{ge},sinalpha_{ m c}$. A numerical determination for the growth rate is given for the instability range $0,{<},k,{<},3$, where $k$ is the wavenumber of the perturbation. For $k|{ m sec},alpha|,{ll},1$, there is excellent agreement between the analytical and numerical results. The results in this paper agree qualitatively with those of Allen and Rowlands for the Zakharov-Kuznetsov equation.