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Abstract

Fatty deposits formed on arterial walls lead to atherosclerosis but it is the interplay between these
deposits and the vessel walls which govern the growth of plaque formation. Crucially however the vast
majority of acute coronary syndromes such as, myocardial infarction, and sudden ischaemic cardiac
death are caused by atherosclerotic plaque rupture and not from a stenosis growing and blocking the
blood flow. In fact, atherosclerotic plaques expand into the vessel wall during much of their existence
and this can make their detection problematic. However inflammation within the necrotic core of the
plaque, can be used to detect which plaques may be vulnerable. Thermal mapping of arterial walls can
help identify the most likely sites for plaque rupture.This paper aims to provide a direct link between the
geometry of these deposits and their thermal properties in order that non-invasive imaging techniques
could be used to spot vulnerable plaques. We will discuss a methodology for estimating the thermal
conductivity which utilises self-similarity properties using fractal analysis and renormalisation. The self-
similar microstructure is captured by a family of random fractals called shuffled Sierpinski carpets (SSC).
The thermal conductivity of the SSC can then be predicted both from its box counting fractal dimension
and via a generalised real space renormalisation method. This latter approach also affords an analysis of

the percolation threshold of two phase fractal media.

Abstract

T depositi di grassi che si formano sulle pareti arteriose provocano I’aterosclerosi ma !’interazione fra
questi depositi e le pareti del vaso che governano lo sviluppo della formazione delle placche. Fondamen-
talmente tuttavia la grande maggioranza delle sindromi coronariche acute come l’infarto miocardico e
la morte cardiaca ischemica improvvisa causata dalla rottura della placca aterosclerotica e non da una
stenosi che cresce e ostruisce il flusso di sangue. Infatti, le placche aterosclerotiche si espandono nella
parete del vaso durante gran parte della loro esistenza e questo pu rendere la loro rilevazione problemat-
ica. Tuttavia I'infiammazione nel nucleo necrotico della placca, pu essere usata per rilevare quali placche
possono essere vulnerabili. La mappatura termica delle pareti arteriose pu contribuire ad identificare i
luoghi pi probabili per la rottura delle placche. Questo articolo intende fornire un legame diretto fra
la geometria di questi depositi e le loro propriet termiche per poter utilizzare le tecniche non-invasive
visualizzazione nell’identificazione delle placche vulnerabili. Discuteremo una metodologia per la val-
utazione della conduttivit termica che utilizza le propriet di auto-similitudine usando 'analisi frattale
ed la rinormalizzazione. Le microstrutture di auto-similitudine vengono individuate da una famiglia di
frattali casuali denominati shuffled Sierpinski carpets (SSC). La conduttivit termica degli SSC pu allora
essere prevista sia dalla relativa scatola che conta la dimensione frattale che per mezzo di un metodo
generalizzato di rinormalizzazione dello spazio reale. Questo ultimo approccio permette inoltre un’analisi

della soglia di percolazione dei mezzi frattali bifase.



1 Introduction

The transport and subsequent deposition of fatty substances on arterial walls leads to atherosclerosis.
The rupture of the atherosclerotic plaque is the most common cause of acute coronary syndromes [1].
Detecting unstable plaques at an early enough stage is vital if preventative measures are to be employed.
Shear stresses on artery walls caused by the blood flow does play a role but it has been found that the
degree of stenosis is a relatively minor factor in predicting which plaques are most prone to rupture.
The fatty substances, once deposited in the vessel walls, lead to a series of mechanisms which promote
plaque growth and which ultimately trigger the body’s defenses. Release of heat from these activated
inflammatory cells gives rise to hotter arterial wall regions. Recent experiments have shown that the
temperature difference between atherosclerotic plaques and normal vessels is measurable [2]. An infrared
angiothermography catheter [3] and a thermistor probe catheter [4, 5] have been employed for generating
thermal maps of arterial walls. By identifying regions where the inflammatory cells are most active, these
thermal maps can identify the most likely sites for plaque rupture. The vulnerable plaques have a soft
lipid core composed of macrophages, full of cholesterol, which is enclosed by a thin fibrous cap. These
macrophages contain cholesterol which release matrix-digesting enzymes leading to plaque rupture [6].
In addition, this problem can be exacerbated by insulin deficiencies caused by diabetes. One reason for
this is that there is an increase in lipid particles being transported from the body’s fat reserves, which

lead inevitably to an increase in the rate of deposition on the blood vessel walls.

The above plaque detection methodology could be enhanced if a non-invasive technique could be
developed. If a link between the plaque geometry and its thermal properties could be established then
one could infer the location of vulnerable plaques. Indeed, recent experimental evidence suggests that
plaque geometry can be used to predict plaque instability [7]. We have recently derived a methodology
which directly relates the thermal conductivity of a randomly aggregated deposit to its geometry [8-10].
The in situ determination of the physical and geometrical properties of plaques is intrinsically difficult
and so we have simulated the material growth using a Monte Carlo type method. We have simulated
the deposition from a particle laden flow in a two-dimensional rectangular channel. We have shown that
it is possible to model the transport and deposition in a particle laden flow by coupling together the
Euler-Lagrangian bulk flow calculation with a Monte Carlo simulation near the wall boundaries [11]. An
alternative approach using Lattice Boltzmann Simulations to model the deposition processes in blood

flow is the subject of current research [12].

In this paper we discuss a class of random fractals known as shuffled Sierpinski carpets (SSC) (see
Figure 1) which capture the self-similar microstructure of the deposit material. The thermal conductivity
of these fractals can be determined both by a real space renormalisation approach and from its box
counting fractal dimension. The former approach also affords an analysis of the percolation threshold of

two phase fractal media.



2 Methodology

In this section we detail the real space renormalisation group (RSRG) approach to the calculation of
the thermal conductivity and percolation properties of randomly aggregated deposits. We will first use
a standard RSRG approach [13] to examine how well this can estimate the effective conductivity of a
monodispersed random aggregate. To simplify the following discussion we will restrict ourselves to a two
phase composite, embedded in a two dimensional Euclidean plane, but these ideas extend in a natural

way to multiple phases in higher dimensions.

2.1 Monodispersed Aggregates

Suppose we have a two phase composite consisting of phase A and phase B and let pg be the volume
fraction of B. If we denote the conductances of the pure substances A and B as o4 and o respectively,then
the initial probability distribution of the conductances is IPy(0) = (1 — pp)d(c —oa) + pd(c —oB). A
square grid is placed over the structure where the size of the grid elements corresponds to the smallest
monophase particle. The grid is then divided up into groups of 2 x 2 cells (again this can be done more
generally) or renormalisation clusters to form the next tessellation §;. In general 3, is renormalised to
Bw+1 by replacing every renormalisation cluster in 3, by a cell whose effective conductivity is equivalent
to the effective conductivity of that renormalisation cluster. The mean cluster size is denoted by &, and,
after m renormalisation steps, &, — 0 and the process is complete. The final probability distribution
is then IP,,(0) = d(c — 0¢) where o° is the effective conductivity of the structure. Now the number of
possible configurations for a two phase, 2 x 2 cluster is 16 and so the renormalisation transformation will
result in a multi-phase composite with a range of effective conductances lying between o4 and og. To gain
an analytic hold we maintain the two phase nature by segregating the effective conductivity distribution
into two classes. Each class is assigned a single effective conductivity and the process continues. We can
measure the effect that this averaging has on the estimated conductivity by simulating on computer a
large number of two-phase composite realisations and calculating their effective conductivity by allowing
the multi-phase distribution to persist. To provide an estimate of the effective conductivity of a cluster
an equivalent conductor network is used and the effective conductance of any configuration is given by
Kirchoff’s laws. The segregation of the multi-phases at step w+1 uses the geometric mean of the effective
conductances at step w as the watershed. The new effective conductivity of these two new classes is given
by a probability-weighted geometric mean of the class constituents. This process continues until one of
the stable fixed points of the renormalisation group transformation is reached. This has three fixed points,
two of which are stable, 0 and 1, and one unstable p%; = (=1 ++/5)/2 (the golden section). The latter of
these corresponds to the percolation threshold which is defined as the minimum volume fraction of phase
B for which there exists a phase B cluster connecting opposite edges of the unit square. In Figure 2(a)
we have estimated the effective conductivity ¢$ of a mono-dispersed random two phase composite, using

RSRG, as a function of pg. Also shown is the calculation obtained by renormalising with no conductivity



averaging < 0%, >. This of course has to be done for finite size composites simulated on computer. It can
be seen that the averaging process does not greatly affect the final estimate and the variation in effective

conductivities when using the multi-phase approach is very small (see Figure 2(b)).

If however we apply RSRG to the deposits which have a non-uniform particle size distribution the
method does not perform quite as well (see Figure 3(c)). The deposit structures are composed of a
random agglomeration of particles whose diameters follow a power law distribution rather than being
mono-dispersed. To undertand the thermal properties of these materials we will analyse a random
structure which has a predetermined size distribution of particles. The basis of this structure is a deter-
ministic fractal, the Sierpinski Carpet (SC) [14], whose constituent particles have their spatial locations

randomised to produce a Shuffled Sierpinski Carpet (SSC) [10].

2.2 Shuffled Sierpinski Carpet

For clarity we start by defining the deterministic Sierpinski carpet (SC) set. The initial configuration
or pre-fractal is the unit square which we denote by Ey € IR?. We divide Ey into nine squares of side
length one third and remove the middle square. The union of the eight remaining squares we denote
by Ei. Each element of FE; is treated in a similar fashion, whereby a central square of side length one
ninth is removed from each of them. Repeating this process we get a decreasing sequence of nonempty
compact sets E,41 C E,. The Sierpinski Carpet set F is then given by, F = (77, E,,. We denote the
length scale of the remaining squares at generation level n by § = (1/3)™ and the number of such squares

as N(0) = 8". The box counting dimension can be shown to equal dimpF = lims_,q log(N(5))/log(1/6).

This basic model can then be generalised by allowing the tremas to occupy (non-overlapping) random
locations, that is we shuffle or mix the conducting particles in the insulating matrix F'. By varying §
and n a range of particle size distributions can be easily prescribed. The area of F' is given by the sum
of an infinite series as 1 — §2/(1 — N§?) for N6 < 1, and so by requiring this to equal zero, as in the

deterministic SC, we obtain

with the corresponding box-counting dimension given by

dimpF = Log((sl2 —1)/Log(1/6) 2)

and we get the following relationship between dimpF and 6,

5 4 62~ dmel _1 =0, (3)



It can be seen therefore that we get the full range of dimensions dimpgF € [1,2] for § € [0, (—1++/5)/2]

(the golden section again !).

3 Results

We can use this framework to simulate a family of SSC’s , governed by equation (1), on computer.
We generate the SSC on a square grid of dimensions W x W, where W = 27, as this allows easy
identification of the renormalisation clusters at each renormalisation level . The smallest trema in the
SSC dictates the initial grid size and so v = [—nlogd/log2] (where [z] denotes the least integer greater
than or equal to z). The overall side length of the SSC is [W4"] grid cells (where [z] denotes the nearest
integer to x). For each {d,n} pair we will generate r realisations so that we can examine the effect that
the shuffling process has on the thermal conductivity. Due to computational cost we have restricted
attention to {d,n} pairs which give rise to v < 9. This will in practice set a lower bound (51(:") on § for
each generation level. The set of SSC arrays we will use below are generated for n = {1,2,...,12} and

5=1{6, 6™ £ A6,..., (-1 +5)/2}.

In Figure 3(a) the RSRG multi-phase, thermal conductivity < o§, >, averaged over the r realisations,
is shown as a function of the length scale generator § for various generation levels n. For a particular
length scale, as n increases, < 0§, > increases. Since op > 04 then as n increases the volume fraction
of phase B increases and so therefore does the effective thermal conductivity. There is however a large
variation in the mean thermal conductivity for a given {4,n} pair. Particularly for large n and large §
(see Figure 3(b)). This suggests that an RSRG theory parameterised by ¢ and n could provide estimates
for < ¢§; > but as the particles move the variation about this value will be significant. In fact < o, >
compares well with the analytic (two-phase) value of for low values of § (see Figure 3(c)) but can have
an error as much as 20% at high values. Comparing the mono-dispersed aggregate with the SSC we can
see that, at intermediate to high volume fractions of phase B, pp, the variation in the estimated thermal
conductivity is as much as 20 times greater (see Figures 2(b) and 3(d)). In the SSC as the constituent
particles are shuffled they can form a wide range of cluster distributions and subsequently a wide variance
in the thermal conductivity arises. This is highlighted again if we plot {< 0§, >, 05} pairs parameterised

by the volume fraction of phase B (see Figure 4).

The results show that the RSRG approach deviates quite substantially from the non-averaged value.
This is because the RSRG approach is appropriate for materials where each of the 16 cluster configurations
occurs with equal probability. However the size distribution of the tremas in the SSC greatly affects these
probabilities. We have revised the underlying probability structure to reflect the non-uniform particle size
distribution to obtain a more specific renormalisation scheme which we have shown provides improved
estimates [9, 10]. This revised RSRG theory is used in the next section to enable us to state a result

about the percolation threshold in an SSC.



3.1 Percolation Threshold

We can utilise this probability structure to examine the dependence of the percolation threshold of
the SSC on ¢ and n. In the percolation analysis we stipulate that the removed squares (or tremas) are
conducting particles and that the set F' forms an insulating pore network. As we shuffle, the tremas can
come into contact with each other and hence a conducting (or percolation) path through this two-phase

medium can be established.

Result 1. The number of generation levels n required to achieve percolation threshold in a SSC, with

length generator 6 is

_ log(2 — 62 — 26*)
=i log(1 — §2) )

where the volume fraction of phase B is,

5 1 o
p%SC — (5(54 _ 58 _ 52 _ 5)(1 _ 52)2 2
1 1
(3 — 6%+ 564)(1—52)"*1 + 1. (5)

(For the proof of this result see [9]).

We can test this result for our sample set of finite generation SSC arrays. Here the SSC structure
is a binary matrix with the pores represented by zero. We can use the Hoshen-Kopelman algorithm
to assign a separate integer to each of the pores in the SSC [15]. If the top and bottom row of this
coded matrix contain the same integer then we know a single conducting cluster spans the SSC. In
Figure 5(a) we have plotted the dependency of the generation level n on the length scale generator &
at percolation threshold using equation (4). We have also plotted the {d,n} pairs which gave rise to
a positive probability of achieving a percolation path over the r realisations. There were only a few
points which satisfied this criterion since the number of generation levels required for most values of §
is computationally prohibitive. There is however a very good agreement between the theory and the
numerical calculations. If we calculate the corresponding phase B volume fraction for these data points
we can test equation (5). There is quite a wide variation in these points about the theoretical value (see
Figure 5(b)) although they appear to centre themselves about this curve. Note that as § becomes very
small we are approaching the mono-dispersed case and as such the curve approaches the theoretical value

of (1/(5) — 1)/2 detailed in section 2.1.

From the coded SSC matrix we can also extract the size distribution of the pores ¢ = {(d;, NV;) : i =

1,...,d} where 6; and N; are the length scale and number of pores at level ¢ respectively. Hence the



remaining conducting area at level 7 is given by,

A =1-) &N (6)
7j=1

From a log-log plot of A; versus §; we can utilise the scaling law A; 5f_dimBF to estimate dimpF'.

For the SSC the set F' is phase set A and Figure 6(a) shows the dependency of the averaged value
< dimpA > on 4, for each generation level n. The theory predicts that as ¢ increases then dimpA
will decrease. The numerical values adhere to this for low values of § but for large values, with a high
generation level, there is a large discrepancy. There is also a corresponding trend in the variation in
the calculated < dimpA > values for each {,n} pair (see Figure 6(b)). These pairs correspond to high

volume fractions of B and so concur with our earlier findings.

For regular fractals the parameters d§, dimpF and n are known but for random deposits these have
to be determined. From our estimate of dimpF we can use equation (3) for the inverse problem of
recovering the length scale generator 6* and hence n* = log(6* Min{d;}/Max{d;})/log(6*) provides an
estimate of the generation level. In Figure 7(a) the recovered length scale generator, averaged for each
{6,n} pair, is compared with the actual value, §. The recovery is very good for the lower values of §
and n. The recovery algorithm predominantly predicts a lower value for the length generator especially
for the higher generation levels. The variance in the recovered length scale generator is also high for
these cases (see Figure 7(b)). It appears that the shuffling of the particles, in an SSC which has a large
range of length scales, can lead to a wide range of cluster distributions. This is also highlighted when we
compare the recovered length scale generator to the actual generation level (see Figures 7(c), (d)). The

mean prediction is predominantly lower and has the largest error and variance when § is large.

3.2 Thermal Conductivity

By utilising bounds on the thermal conductivity of random media in the limit of low porosity Thovert
and co-workers [16] were able to derive an expression for the thermal conductivity of regular fractals.
Here the constituent particles of the conducting medium, that is phase A, have unit conductivity, whilst
those of phase B are perfect insulators. Using the SSC as our model structure the remaining conducting

surface ¢ is given by ¢ = §(2~%m54)  We can therefore derive the following result [10].

Result 2.
The thermal conductivity o of an SSC is given by

1— 5(27dimBA) n

29 (7)

o=

where n is the number of generation levels in the construction of the fractal and g is a morphological



parameter characterising the pore shape.

We can test the above result using the SSC data set generated in the previous section. In Figure
8(a) the mean RSRG multi-phase thermal conductivity is plotted as a function of the mean box counting
fractal dimension evaluated numerically. Also shown are the corresponding values using equation (7).
Due to the confounding issue of poor < dimpA > recovery associated with high {d,n} values we have
restricted attention to the cases where s(dimpA) < 0.015 (see Figure 6(b)). For this subset there is good
agreement in almost all cases between the theoretical and numerical values. This subset of {d,n} pairs

also has relatively small variance (see Figure 8(b)).

4 Conclusions

The central aim of this paper was to derive an estimate for the thermal conductivity of particu-
late deposits from a knowledge of the internal pore structure and intrinsic thermal conductivity of the
constituent particles. We have restricted our attention to two phase composites embedded in a two di-
mensional plane. In order to develop a fractal model of the pore structure it was necessary to introduce
a new type of random fractal the shuffled Sierpinski carpet (SSC). One well established method of esti-
mating the physical properties of random media is real space renormalisation group (RSRG) theory. It
is particularly useful in deriving analytical results regarding the percolation properties of such media.
This required a revision of the standard probability structure of cluster classes due to the poorly mized
nature of the SSC. Using this approach we were able to derive an equation which predicts the number of
generation levels needed to achieve percolation threshold as a function of the underlying length generator
of the SSC. We have utilised bounds on the thermal conductivity, in the limit of low porosity and high
contrast in the conductivities of the two constituent phases, to provide an estimate of the deposit thermal

conductivity which has an explicit dependency on the box counting dimension of the structure.

We have shown that the thermal conductivity of randomly accumulated deposits can be estimated
from the geometry of the pore structure. We therefore suggest that non-invasive techniques which only
recover geometrical information may be able to infer thermal properties of the plaque. The geometry
is characterised by its box counting fractal dimension and an automated procedure for recovering the
length scale generator and generation level is reported. The bulk flow and Monte Carlo simulations are
currently being recast using a Lattice Boltzmann approach to provide a more realistic model of particle

laden blood flow and the geometry of the artery.
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Figure 1.

A Shuffled Sierpinski Carpet (SSC) with phase A (white) conductivity o4 = 0.05 and phase B (black)
conductivity op =08 and § = 0.3, n =4, W =27, v =7 and pp = 0.304504. The phase B constituent
particles are N* = {1,10,102,1034} in number with respective sizes W ¢ = {38,12,3,1} grid cells, and
dimpA = 1.9304.

Figure 2.

(a) The mean, RSRG multi-phase thermal conductivity < ¢§; > () for mono-dispersed particles (phase
B) in a continuum phase (phase A) versus the volume fraction of phase B, pg. Also shown is the

analytic, RSRG two-phase thermal conductivity o§ (—).

b) The standard deviation s(c§,), over the r = 20 realisations per volume fraction, versus pp
M p ) p

(04 =0.05, op = 0.8 and the grid size is 27 x 27).

Figure 3.

(a) The mean, RSRG multi-phase thermal conductivity < o, > for a set of shuffled Sierpinski carpets.
The tremas are the phase B particles in the continuum phase of the fractal set, phase A. The thermal
conductivity values, averaged over r = 20 realisations, are shown as a function of the generating length

scale §, for various generation levels n.

(b) The standard deviation s(o§,) for each {J,n} pair versus ¢ (64 = 0.05, o = 0.8 and the grid size is

27 x 27).

(¢) The mean, RSRG multi-phase thermal conductivity < o5, > () is shown as a function of phase B

volume fraction pg. Also shown is the analytic, RSRG two-phase thermal conductivity o§ (—).

(d) The standard deviation s(o§,) for each {d,n} pair as a function of phase B volume fraction pg.

Figure 4.

The mean, RSRG multi-phase thermal conductivity < g%, > for a set of shuffled Sierpinski carpets

(numerical) versus the corresponding analytic, RSRG two-phase thermal conductivity o§.

Figure 5.

(a) The relationship between generation level n and generation length ¢ for the Shuffled Sierpinski
Carpet at percolation threshold given by equation (4) (—). Also shown are the {d,n} pairs which gave

rise to a percolation probability in the range (0.3,0.7) over r = 20 realisations (e).

(b) The relationship between the percolation threshold, phase B volume fraction pg and the generating
length scale § given by equation (5) (—). Also shown are the phase B volume fractions of the {4,n}

pairs shown in (a) (e).
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Figure 6.

(a) The mean box counting fractal dimension < dimpA > of a set of SSC is shown as a function of the
length scale generator 6. The numbers indicate the particular generation level n. Also shown is the

theoretical relationship given by equation (2) (-).

(b) The standard deviation of the box counting fractal dimension s(dimpA) of a set of SSC is shown as

a function of the length scale generator §. The numbers indicate the particular generation level n.

Figure 7.

(a) The mean recovered length scale generator < §* > as a function of the original length scale
generator ¢ for a set of SSC. The numbers indicate the particular generation level. (The 45° line aids

indentification of the locus of the points where an exact recovery is made.)

(b) The standard deviation of the recovered length scale generator s(6*) as a function of the original

length scale generator ¢ for a set of SSC.

(¢) The mean recovered generation level < n* > as a function of the original generation level n for a set

of SSC.

(d) The standard deviation of the recovered generation level s(n*) as a function of the original

generation level n for a set of SSC.

Figure 8.

(a) The mean, RSRG multi-phase thermal conductivity < ¢§, > versus the mean box counting fractal
dimension of continuum phase A < dimpgA > for a subset of SSC where s(dimpA) < 0.015 (O). Also

shown are the theoretical values given by equation (7) (x) (64 =1, o0 =0 and g = 0.27).

(b) The standard deviation of the RSRG multi-phase thermal conductivity s(o§,) versus the mean box
counting fractal dimension of continuum phase A < dimpA > for a subset of SSC where

s(dimpA) < 0.015.
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