Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Eigenfunction expansions for generalized functions of several variables

Lamb, W. and McGhee, D.F. (2004) Eigenfunction expansions for generalized functions of several variables. Integral Transforms and Special Functions, 15 (3). pp. 239-249. ISSN 1065-2469

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The constructive method developed by Zemanian [Zemanian, A. H. (1968). Generalized Integral Transformations. Interscience, New York] for extending L2-convergence results on eigenfunction expansions to certain classes of generalized functions of one variable is shown to be valid also for generalized functions of several variables. In the latter case, the expansions involve the eigenfunctions associated with symmetric partial differential operators. Specific examples considered are the Laplace-Beltrami operator on the unit sphere in ℝN and a class of symmetric elliptic operators in L2(Φ#169;), where Φ#169; is a bounded region in ℝN. Applications to the solution of distributional initial-boundary value problems are also discussed.