Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Variational principles for eigenvalues of self-adjoint operator functions

Eschwe, D. and Langer, M. (2004) Variational principles for eigenvalues of self-adjoint operator functions. Integral Equations and Operator Theory, 49 (3). pp. 287-321. ISSN 0378-620X

[img] PDF
eschwe_langer04.pdf - Final Published Version
Restricted to Registered users only

Download (395kB) | Request a copy from the Strathclyde author

Abstract

Variational principles for eigenvalues of certain functions whose values are possibly unbounded self-adjoint operators T(λ) are proved. A generalised Rayleigh functional is used that assigns to a vector x a zero of the function (T(λ)x, x), where it is assumed that there exists at most one zero. Since there need not exist a zero for all x, an index shift may occur. Using this variational principle, eigenvalues of linear and quadratic polynomials and eigenvalues of block operator matrices in a gap of the essential spectrum are characterised. Moreover, applications are given to an elliptic eigenvalue problem with degenerate weight, Dirac operators, strings in a medium with a viscous friction, and a Sturm-Liouville problem that is rational in the eigenvalue parameter.