Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A front-tracking method for the simulating of 3D multi-fluid flows with free surfaces

De Sousa, F.S. and Mangiavacchi, N. and Nonato, L.G. and Castelo, A. and Tomé, M.F. and Ferreira, V.G. and Cuminato, J.A. and McKee, S. (2004) A front-tracking method for the simulating of 3D multi-fluid flows with free surfaces. Journal of Computational Physics, 198 (2). pp. 469-499. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A method for simulating incompressible, imiscible, unsteady, Newtonian, multi-fluid flows with free surfaces is described. A sharp interface separates fluids of different density and viscosity. Surface and interfacial tensions are also considered and the required curvature is geometrically approximated at the fronts by a least squares quadratic fitting. To remove small undulations at the fronts, a mass-conserving filter is employed. The numerical method employed to solve the Navier-Stokes equations is based on the GENSMAC-3D front-tracking method. The velocity field is computed using a finite-difference scheme on an Eulerian grid. The free-surface and the interfaces are represented by an unstructured Lagrangian grid moving through an Eulerian grid. The method was validated by comparing the numerical results with analytical results for a number of simple problems. Complex numerical simulations show the capability and emphasize the robustness of this new method.