Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Scattered data fitting by direct extension of local polynomials to bivariate splines

Davydov, O. and Zeilfelder, F. (2004) Scattered data fitting by direct extension of local polynomials to bivariate splines. Advances in Computational Mathematics, 21 (3-4). pp. 223-271. ISSN 1019-7168

[img]
Preview
PDF
noint.pdf - Accepted Author Manuscript

Download (3MB) | Preview

Abstract

We present a new scattered data fitting method, where local approximating polynomials are directly extended to smooth (C 1 or C 2) splines on a uniform triangulation (the four-directional mesh). The method is based on designing appropriate minimal determining sets consisting of whole triangles of domain points for a uniformly distributed subset of . This construction allows to use discrete polynomial least squares approximations to the local portions of the data directly as parts of the approximating spline. The remaining Bernstein-Bæ#169;zier coefficients are efficiently computed by extension, i.e., using the smoothness conditions. To obtain high quality local polynomial approximations even for difficult point constellations (e.g., with voids, clusters, tracks), we adaptively choose the polynomial degrees by controlling the smallest singular value of the local collocation matrices. The computational complexity of the method grows linearly with the number of data points, which facilitates its application to large data sets. Numerical tests involving standard benchmarks as well as real world scattered data sets illustrate the approximation power of the method, its efficiency and ability to produce surfaces of high visual quality, to deal with noisy data, and to be used for surface compression.