Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Scattered data fitting by direct extension of local polynomials to bivariate splines

Davydov, O. and Zeilfelder, F. (2004) Scattered data fitting by direct extension of local polynomials to bivariate splines. Advances in Computational Mathematics, 21 (3-4). pp. 223-271. ISSN 1019-7168

[img]
Preview
PDF
noint.pdf - Accepted Author Manuscript

Download (3MB) | Preview

Abstract

We present a new scattered data fitting method, where local approximating polynomials are directly extended to smooth (C 1 or C 2) splines on a uniform triangulation (the four-directional mesh). The method is based on designing appropriate minimal determining sets consisting of whole triangles of domain points for a uniformly distributed subset of . This construction allows to use discrete polynomial least squares approximations to the local portions of the data directly as parts of the approximating spline. The remaining Bernstein-Bæ#169;zier coefficients are efficiently computed by extension, i.e., using the smoothness conditions. To obtain high quality local polynomial approximations even for difficult point constellations (e.g., with voids, clusters, tracks), we adaptively choose the polynomial degrees by controlling the smallest singular value of the local collocation matrices. The computational complexity of the method grows linearly with the number of data points, which facilitates its application to large data sets. Numerical tests involving standard benchmarks as well as real world scattered data sets illustrate the approximation power of the method, its efficiency and ability to produce surfaces of high visual quality, to deal with noisy data, and to be used for surface compression.