Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Spectral concentrations and resonances of a second order block operator matrix and an associated λ-rational Sturm-Liouville problem

Brown, B.Malcolm and Langer, M. and Marletta, Marco (2004) Spectral concentrations and resonances of a second order block operator matrix and an associated λ-rational Sturm-Liouville problem. Proceedings A: Mathematical, Physical and Engineering Sciences, 460 (2052). pp. 3403-3420. ISSN 1364-5021

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper studies the resonances and points of spectral concentration of the block operator matrix $$\egin{pmatrix} -\frac{d^2}{d x^2}+q & \sqrt{tw} \\ \sqrt{tw} & u \end{pmatrix} $$ in the space $L^2(0,1) \oplus L^2(0,1)$. In particular we study the dynamics of the resonance/eigenvalue λ(t), showing that an embedded eigenvalue can evolve into a resonance and that eigenvalues which are absorbed by the essential spectrum give rise to resonance points. A connection is also established between resonances and points of spectral concentration. Finally, some numerical examples are given which show that each of the above theoretical possibilities can be realized.