Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Spectral concentrations and resonances of a second order block operator matrix and an associated λ-rational Sturm-Liouville problem

Brown, B.Malcolm and Langer, M. and Marletta, Marco (2004) Spectral concentrations and resonances of a second order block operator matrix and an associated λ-rational Sturm-Liouville problem. Proceedings A: Mathematical, Physical and Engineering Sciences, 460 (2052). pp. 3403-3420. ISSN 1364-5021

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper studies the resonances and points of spectral concentration of the block operator matrix $$\egin{pmatrix} -\frac{d^2}{d x^2}+q & \sqrt{tw} \\ \sqrt{tw} & u \end{pmatrix} $$ in the space $L^2(0,1) \oplus L^2(0,1)$. In particular we study the dynamics of the resonance/eigenvalue λ(t), showing that an embedded eigenvalue can evolve into a resonance and that eigenvalues which are absorbed by the essential spectrum give rise to resonance points. A connection is also established between resonances and points of spectral concentration. Finally, some numerical examples are given which show that each of the above theoretical possibilities can be realized.

Item type: Article
ID code: 2169
Keywords: resonance, spectral concentration, embedded eigenvalue, block operator matrix, λ-rational eigenvalue problem, Mathematics
Subjects: Science > Mathematics
Department: Faculty of Science > Mathematics and Statistics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 04 Jan 2007
    Last modified: 10 Jul 2012 10:47
    URI: http://strathprints.strath.ac.uk/id/eprint/2169

    Actions (login required)

    View Item