
Convergence of a Collocation Scheme for a
Retarded Potential Integral Equation

Dugald B Duncan1 and Penny J Davies2

1 Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh,
EH14 4AS, UK (D.B.Duncan@ma.hw.ac.uk)

2 Department of Mathematics, University of Strathclyde, 26 Richmond St, Glasgow,
G1 1XH, UK

Abstract. Time domain boundary integral formulations of transient scattering prob-
lems involve retarded potential integral equations (RPIEs). We outline how Fourier and
Laplace transforms can be used to obtain an O(h2) convergence result for a “polar”
piecewise–linear collocation approximation of a scalar RPIE on an infinite flat plate.

1 Introduction

We consider the approximate solution of the scalar RPIE∫
Γ

u(x′, t−|x−x′|)
|x−x′|

dx′ = a(x, t) for x ∈ Γ , t ∈ (0, T ) (1)

for u when a is given on Γ × (0, T ) for fixed T > 0, and

u ≡ 0, a ≡ 0 for all t ≤ 0. (2)

This is the single layer potential equation for acoustic scattering from the surface
Γ [8, Sect. 2.3]. It is an important problem in its own right, and also appears as
a part of more complicated electromagnetic and elastodynamics problems.

Various numerical methods for approximating RPIEs have been reported in
the literature. For example a full Galerkin approximation in time and space
is described and analysed in [1,7,9], and collocation schemes for the problem
have been described by many authors including [10,11]. Collocation schemes are
generally easier to implement and harder to analyse than variational methods.

Here we examine the collocation scheme described in [5], which uses a lo-
cal change of variable to polar coordinates. Stability was demonstrated, and a
convergence estimate at the (slow!) rate O(1/ lnh) as mesh size h → 0 was ob-
tained in [5]. We describe this scheme in §2 and outline how to obtain the much
improved convergence estimate O(h2) in §3.

2 Polar collocation scheme

We approximate the RPIE (1) on an infinite flat surface in order to make Fourier
convergence analysis possible. We discretise it uniformly in space into squares
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of side h, with uniform time-step ∆t. The space nodes xβ are at the corners of
the square space mesh and the time nodes are at tn = n∆t for integer n. The
approximation

u(x, t) ≈ U(x, t) =
∑
β,s

Usβ ϕβ(x)ψs(t) . (3)

is piecewise–linear in both space and time.
We substitute U for u in (1) and collocate at all the space nodes xα and time

nodes tn (n = 1, 2, . . .) to obtain the approximation∑
β,s

Usβ

∫
Γ

ϕβ(x′)ψs(tn−|xα−x′|)
|xα−x′|

dx′ = a(xα, tn) . (4)

The integrals above involve quite complicated domains which are the intersec-
tions of the support of the spatial basis functions ϕβ(x′) with the temporal basis
functions evaluated at retarded times ψs(tn−|xα−x′|). This is quite different
from standard finite element problems. The integrals can be computed exactly
with some effort (for example using Stokes’ theorem) and then appear to pro-
duce a stable scheme over a range of mesh ratios, while more straightforward,
standard quadrature methods do not [5,6]. We use the word “appear” here since
the Fourier stability analysis involves a step that must be verified numerically.

An alternative to standard quadrature and exact evaluation is the “polar
coordinate” scheme described in [5]. For each spatial collocation point xα in
turn, we change variables in the integrals in (4) to polar coordinates (R, θ) where
R = |xα − x′|. Keeping the θ integrals exact, we approximate the R integrals
using the trapezoidal rule to get

∆t

n∑
s=0

Wn
s

∑
β

Un−sβ

∫ 2π

0

ϕβ(xα +R eθ) dθ = a(xα, tn) . (5)

where eθ = (cos θ, sin θ), and the trapezoidal weights Wn
0 = 1/2, Wn

n = 1/2
and Wn

s = 1 otherwise. Implementation for finite surfaces is examined in [3] and
stability is investigated in [5] using Fourier methods (see also [4]). The polar
scheme appears to be stable for all values of the mesh ratio r.

3 Convergence

We make the following assumptions to carry out our convergence analysis.

Hypotheses. Suppose

(H1) that a ∈ Hm+2
∗

(
0, T ;Hs+2(R2)

)
for s ≥ 4 and (integer) m ≥ 4 and hence

that exact solution u ∈ Hm
∗
(
0, T ;Hs(R2)

)
(see [6]);

(H2) that the polar collocation scheme is stable at mesh ratio r = ∆t/h ∈ (0,∞).

We need to make (H2) explicitly because stability has only been verified numer-
ically and not proved rigorously in [5].
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On the infinite flat plate with uniform space and time grids, the approxima-
tion (5) can be written as

n−1∑
m=0

Q
mUn−mj,k = anj,k , (6)

where Uj,k ≈ u(jh, kh) and the Qm are made up of spatial shift operators. They
are translation invariant on the space mesh because it is uniform and the surface
Γ is flat and unbounded. Taking the discrete Fourier transform (DFT) of (6) at
frequency ω yields

n−1∑
m=0

qm(hω) Ũn−m(ω) = ãn(ω) , (7)

where for any mesh function v = (vj,k) the DFT is defined by

ṽ(ω) = h2
∑
j,k

vj,k e
−i(xj ,yk)·ω for ω ∈ Sh = [−π/h, π/h]2 .

This is the analogous process to the Fourier decomposition step of von Neumann
stability analysis for PDEs.

The continuous Fourier transform (CFT) of the exact RPIE (1) gives the
first kind Volterra convolution equation

2π
∫ t

0

J0(ωR) û(ω, t−R) dR = â(ω, t) . (8)

ω is the Fourier frequency, ω = |ω|, and J0 is the first kind Bessel function of or-
der zero. Using a piecewise linear approximation in time for u in (1) corresponds
to using the trapezoidal rule to solve (8). This suggests that the coefficients
qm(hω) approximate 2π∆t J0(ωtm), and this is indeed the case [5].

Lemma 1 There exists a constant C independent of m, h and ω such that∣∣∣∣J0(ωtm)− qm(hω)
2π∆t

∣∣∣∣ ≤ C(hω)2 for all m ≥ 1 and all ω ∈ Sh. (9)

Details of the proof are similar to those given in [6] for more standard collocation
schemes using exact integration. Our O(h2) convergence result stems from the
second order approximation result given in this Lemma and the stability of the
approximate solution. We outline the steps below.

The discrete L2 norm ‖·‖h of the error in the approximate solution U satisfies

‖Un − un‖h ≤ ‖Ũn − ûn‖F + ‖ûn − ũn‖F , (10)

and the discrete Fourier and L2 norms are related through Parseval’s identityh2
∑
j,k

v2
j,k

1/2

≡ ‖v‖h = ‖ṽ‖F ≡
(

1
4π2

∫
Sh

|ṽ(ω)|2 dω
)1/2

.



4 Dugald B Duncan and Penny J Davies

It follows from (H1) and [2, Thm. 5] that the difference between the discrete and
continuous Fourier transforms of the exact solution u satisfies

‖ûn − ũn‖F ≤ Chs‖u‖Hs ≤ Chs‖a‖Hm+2
∗ (0,T ;Hs+2(R2)) ,

with s ≥ 4.
Bounding ‖Ũn − ûn‖F is more complicated. Comparing the CFT (8) of the

exact RPIE with the scheme’s DFT (7) gives

n∑
m=1

qn−m(hω) εm(ω) = ãn(ω)− ân(ω) + en(ω) (11)

where εm = Ũm − ûm is the term we wish to bound. The error term satisfies

|en| =

∣∣∣∣∣
∫ tn

0

J0(ω(tn−R)) û(ω, R) dR−
n∑

m=0

qn−m(hω) ûm(ω)

∣∣∣∣∣ ≤ F1(ω)h2 ,

(12)
(using Lemma 1 and standard results for the trapezoidal rule: see [6]), where
F1 ∈ L2(R2), since the exact solution u ∈ H2

∗ (0, T ;H2(R2)). It is convenient to
write εn = αn + βn, and to seek bounds on ‖αn‖F and ‖βn‖F , where

n∑
m=1

qn−m(hω)αm(ω) = ãn(ω)− ân(ω) ,
n∑

m=1

qn−m(hω)βm(ω) = en(ω) .

(13)
It follows from the stability assumption (H2) (see [5,6]), that

|αn| ≤ C

∆t

n∑
m=1

|ãm − âm| and |βn| ≤ C

∆t

n∑
m=1

|em| for n = 1, 2, . . . . (14)

Combining this with (H1) and [2, Thm. 5], we have

‖αn‖F ≤
C

∆t

n∑
m=1

‖ãm − âm‖F ≤ Chs‖a‖Hm+2
∗ (0,T ;Hs+2(R2))

and combining (14) with (12) gives |βn| ≤ CF1(ω).
Unfortunately the bound on |βn| is not precise enough. Returning to (13)

when hω is “small” (hω < C0 for a sufficiently small constant C0), we take
the Z-transform and use the convolution property to get Z(β) = Z(e)/Z(q).
It is then possible (but not easy) to obtain an upper bound on 1/|Z(q)| in the
Z-transform domain, and then invert to get

|βn| ≤ F2(ω)h2 for ωh ≤ C0 (15)

in the time domain, where F2 ∈ L2(R2) with two more degrees of smoothness in
time and one in space on the exact solution u than are already required to get
the bound (12). This is guaranteed by (H1).
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Following the arguments used in [12],

‖βn‖2F ≤ h4

∫
low

|F2(ω)|2 dω +
∫

high

∣∣∣∣h2ω2

C2
0

CF1(ω)
∣∣∣∣2 dω ≤ Ch4

using bound (15) for “low” frequency (ωh < C0) and |βn| ≤ CF1(ω) for “high”
(ωh > C0 ∩ Sh). This requires two extra degrees of smoothness in space on
solution u to ensure that ω2F1(ω) ∈ L2(R2). Combining the various bounds
above yields the result:

Theorem 1. Under hypotheses (H1) and (H2), the global error for the ‘polar’
approximation scheme satisfies the bound ‖Un−un‖h ≤ Ch2 as h→ 0 whenever
tn < T , where C is a constant.
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