Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Synclinic and anticlinic ordering in frustrated smectics

Osipov, M.A. and Fukuda, A. and Hakoi, H. (2003) Synclinic and anticlinic ordering in frustrated smectics. Molecular Crystals and Liquid Crystals, 402 (1). pp. 473-474. ISSN 1542-1406

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Molecular origin of synclinic and anticlinic ordering in the smectic-C and smectic-CA phases is considered in detail. The model potential for the anticlinic phase is proposed and possible contributions between various intermolecular interactions are discussed. It is concluded that conventional dispersion and steric interactions between mesogenic molecules generally do not promote the Sm-CA phase. A particular model of the anticlinic phase is proposed which is based on interlayer orientational correlations between transverse molecular dipoles located in the flexible chains. Such correlations are not sensitive to molecular chirality and thus the theory accounts for the formation of the anticlinic phase in racemic mixtures. Finally the microscopic origin of ferrielectric and antiferroelectric subphases is discussed and the concept of the 'discrete' flexoelectric effect is introduced which can in principle be used to explain the particular structure of subphases.

Item type: Article
ID code: 2136
Keywords: liquid crystal, phase transition, casimir force, anticlinic ordering, frustrated smectics, subphase, Mathematics, Physics, Materials Science(all), Chemistry(all), Condensed Matter Physics
Subjects: Science > Mathematics
Science > Physics
Department: Faculty of Science > Mathematics and Statistics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 24 Nov 2006
    Last modified: 04 Sep 2014 11:43
    URI: http://strathprints.strath.ac.uk/id/eprint/2136

    Actions (login required)

    View Item