Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Synclinic and anticlinic ordering in frustrated smectics

Osipov, M.A. and Fukuda, A. and Hakoi, H. (2003) Synclinic and anticlinic ordering in frustrated smectics. Molecular Crystals and Liquid Crystals, 402 (1). pp. 473-474. ISSN 1542-1406

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Molecular origin of synclinic and anticlinic ordering in the smectic-C and smectic-CA phases is considered in detail. The model potential for the anticlinic phase is proposed and possible contributions between various intermolecular interactions are discussed. It is concluded that conventional dispersion and steric interactions between mesogenic molecules generally do not promote the Sm-CA phase. A particular model of the anticlinic phase is proposed which is based on interlayer orientational correlations between transverse molecular dipoles located in the flexible chains. Such correlations are not sensitive to molecular chirality and thus the theory accounts for the formation of the anticlinic phase in racemic mixtures. Finally the microscopic origin of ferrielectric and antiferroelectric subphases is discussed and the concept of the 'discrete' flexoelectric effect is introduced which can in principle be used to explain the particular structure of subphases.