Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Theory of Nematic-smectic phase separation in thin twisted liquid crystal cells

Osipov, M.A. and Sambles, J.R. and Ruan, L. (2003) Theory of Nematic-smectic phase separation in thin twisted liquid crystal cells. Liquid Crystals, 30 (7). pp. 823-830. ISSN 0267-8292

Full text not available in this repository. (Request a copy from the Strathclyde author)


Recently it has been shown experimentally by the authors that a highly twisted thin nematic cell at low temperatures can separate into a smectic A region in the middle of the cell surrounded by twisted nematic layers at the boundaries. In this case the twist is expelled into the nematic layers and the nematic-smectic A transition temperature is strongly depressed. We present a thermodynamic theory of such a phase transition in a twisted nematic cell, taking into account that the smectic A slab inside the nematic cell can be stable only if the decrease of free energy in the smectic region overcomes the increase in distortion energy of the twist deformation in the nematic layers plus the energy of the nematic-smectic A interface. In such a system the equilibrium thickness of the smectic A slab corresponds to the minimum of the total free energy of the whole cell, which includes all the bulk and surface contributions. Existing experimental data are at least qualitatively explained by the results of the present theory. This opens a unique possibility to study the properties of the nematic-smectic interface which is perpendicular to the smectic layers.