Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Large growth factors in Gaussian elimination with pivoting

Higham, D.J. and Higham, N.J. (1989) Large growth factors in Gaussian elimination with pivoting. SIAM Journal on Matrix Analysis and Applications, 10 (2). pp. 155-164. ISSN 0895-4798

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The growth factor plays an important role in the error analysis of Gaussian elimination. It is well known that when partial pivoting or complete pivoting is used the growth factor is usually small, but it can be large. The examples of large growth usually quoted involve contrived matrices that are unlikely to occur in practice. We present real and complex $n imes n$ matrices arising from practical applications that, for any pivoting strategy, yield growth factors bounded below by $n / 2$ and $n$, respectively. These matrices enable us to improve the known lower bounds on the largest possible growth factor in the case of complete pivoting. For partial pivoting, we classify the set of real matrices for which the growth factor is $2^{n - 1} $. Finally, we show that large element growth does not necessarily lead to a large backward error in the solution of a particular linear system, and we comment on the practical implications of this result.