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In the present work we describe a method which allows the incorporation of surface 

tension into the GENSMAC2D code. This is achieved on two scales. First on the scale 

of a cell, the surface tension effects are incorporated into the free surface boundary 

conditions through the computation of the capillary pressure. The required curvature 

is estimated by fitting a least square circle to the free surface using the tracking 

particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength 

perturbations are filtered out using a local 4-point stencil which is mass conservative. 

An efficient implementation is obtained through a dual representation of the cell data, 

using both a matrix representation, for ease at identifying neighbouring cells, and 

also a tree data structure, which permits the representation of specific groups of cells 

with additional information pertaining to that group. The resulting code is shown to 

be robust, and to produce accurate results when compared with exact solutions of 

selected fluid dynamic problems involving surface tension.  

Keywords: Numerical simulation, free-surface flows, surface tension 

  

  

Introduction 

Surface tension effects are relevant to many industrial problems, for example, coating, 

paint drying and moving drops occurring for instance in ink jet printing. 

GENSMAC2D is an updated version of the GENSMAC (Tome and McKee, 1994) 
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code designed for simulating two dimensional free surface flows and was motivated 

by the need to simulate container filling in the food industry. Food stuff tends to be a 

high viscosity, usually shear-thinning, fluid and as such surface tension could be 

disregarded without any serious loss of accuracy. In the present work we describe a 

method which allows the incorporation of surface tension into the GENSMAC2D 

code, enabling the application of the code to a much larger variety of industrial 

problems. GENSMAC2D system simulates incompressible free surface flow by 

solving the Navier-Stokes equations together with the mass conservation equation 

which in non-dimensional form can be written as  

 

where Re = UL/ν and Fr
2 
= U

2
/(Lg) are the Reynolds and Froude numbers, U and L 

are reference scales for the velocity and length, ν is the kinematic viscosity, g is the 

magnitude of the gravity acceleration, g is the unitary gravitational field, u, p and t are 

the non-dimensional velocity, pressure, and time. These equations are solved as 

follows:  

For a given time t0, let (x, t0) be a pressure distribution that satisfies the free-surface 

boundary conditions, and u(x, t0), the solution of Eq. (1). The intermediate velocity 

(x, t), t = t0+δt, is then computed using the equation  

 

The final velocity of the fluid at t = t0+δt is given by  

 

where 

 

Once ψ(x,t) is computed using Eq. (5), we can compute the corrected velocity u(x,t) 

using Eq. (4) and the new pressure  

 

Following this procedure, the velocity u(x, t), at time t = t0+δ satisfies Eq(2).  

For the solution of equations Eq. (3) and Eq. (4), appropriate boundary conditions are 

applied. For solid walls null velocities are enforced. At the free surface, the boundary 

conditions need to satisfy mass conservation. The Poisson equation Eq. (5) is solved 



satisfying Dirichlet boundary conditions at the free surface and homogeneos 

Neumann condition at solid boundaries.  

At the free surface the boundary conditions for pressure and velocity are given by (T⋅ 
n)⋅ m = 0 and (T⋅ n)⋅ n = pcap, where n and m are the normal and tangential vectors to 

the free surface. T is the stress tensor and pcap = σκ is the capillary pressure, 

originating from the effects of surface tension σ, and the curvature κ. The 

computation of pcap, σ and κ will be discussed in more detail in the following 

sections.  

Similarly to MAC (Welch et al., 1965), SMAC (Amsden and Harlow, 1970), and 

GENSMAC (Tome and McKee, 1994) methods, in GENSMAC2D, the equations Eqs. 

(3)-(6) are discretized by finite differences in a staggered grid. However, in 

GENSMAC2D, the fluid domain is tracked using particles only at the free surface. 

Using these particles, the free surface is approximated by a piecewise linear surface 

and represented by the "halfedge2d" structure. The flow properties are represented in 

a grid of square cells which are classified as: [B] (Boundary) if more than half of its 

volume belongs to a rigid boundary; [I] (Inflow) if more than half of its volume 

belongs to an inflow boundary; [E] (Empty) if it does not contain fluid nor more than 

half of its volume belongs to the fluid inflow or a rigid boundary; [S] (Surface) if it 

contains part of the free surface and it is in contact with a E cell; and [F] (Full) if it 

contains fluid, and is not in contact with E cells.  

Figure 1 shows an example of the cell structure of a flow at a given time. In this 

figure, the empty cells have not been marked.  

   

 

   

In the computation of the free surface boundary conditions in each S cell, we need to 

have approximations for the surface normals. These are usually obtained according to 

the classification of the neighbouring cells, as follows: n = (1,0) if only the right 

neighbour is E; n = (-1,0) if only the left neighbour is E; n = (0,1) if only the top 
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neighbour is E; n = (0,-1) if only the bottom neighbour is E; n = (√2 /2,√2 /2) if only 

right and top neighbour are E; and so on.  

For the implementation of the surface tension effects it is also necessary to estimate 

the surface curvature at the center of each surface cell, and to take into account sub-

cell surface tension effects. In the following sections we describe the methodology 

employed in the implementation of the surface tension effects. This methodology 

results in a better estimate of the surface normal. This normal can be used to improve 

the accuracy of the approximation of the free surface boundary conditions employed 

by the code.  

   

Surface Tension Effects 

The computation of the surface tension is performed at two levels: first at sub-grid 

level, where small undulations on the free surface are eliminated, and second at cell 

level, where the free surface curvature at the center of each S cell is approximated. 

This approximation will be used in the implementation of the pressure boundary 

condition at the free surface.  

   

Elimination of Small Undulations 

In many applications, in particular when the Reynolds number is high (larger than 

50), small undulation may appear at the free surface due to variations in the velocity 

field from cell to cell, and be amplified in regions where the surface area is shrinking. 

Figure 2 shows a sketch of the problem. These undulations are frequently much 

smaller than a cell, and usually they are not present in laboratory experiments because 

they are physically removed by a combination of surface tension and viscous effects.  
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A numerical surface tension implementation that acts at the cell level cannot take into 

account these sub-cell undulations, and correctly suppress them.  

There are several techniques that can be used to suppress these unphysical 

undulations, such as substitution of the position of each particle in the surface by the 

average of its neighbours, among others. However, in fluid flow simulations it is 

important that the applied technique does not change the mass of the flow (and hence 

the volume in the case of incompressible flow).  

In the technique implemented in GENSMAC2D, denominated Trapezoidal Sub-grid 

Undulations Removal (TSUR), the position of two adjacent particles is changed 

simultaneously, in such a way that the area delimited by these two particles and its 

neighbours does not change.  

Consider four consecutive particles at the free surface, given by the points Xi, Xi+1, 

Xi+2, and Xi+3, as shown in Fig. 3. Particles Xi+1 and Xi+2 will be repositioned in such a 

way that L1 = L2 = L3, h1 = h2, and the final area of the polygon formed by the points 

Xi, Xi+1, Xi+2, and Xi+3 be equal to the area of the same polygon before modification.  

   

 

   

This method is applied to all the adjacent pairs of points on the free surface. However, 

particles are allowed to move only when their destination cells are the same that their 

original cells, so that cell classification is not modified.  
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Curvature Approximation  

The curvature of the free surface in a surface cell is approximated by the arc of a 

circumference that best fits the surface points in that cell and its neighbour, using the 

least squares method.  

The circumference equation is (x - x0)
2
 + (y - y0)

2
 = r

2
, where (x0, y0) are the 

coordinates of the center, and r is the radius that need to be determined. This 

expression can be written as 2αx+2βy+γ = x
2
+y

2
, where α = x0, β = y0, and γ = r

2
-x0

2
-

 

y0
2
.  

To compute the approximation of the curvature we need to determine α, β and γ such 

that the surface S approximates the free surface. To find this approximation we 

consider the particles xi=(xi, yi)
t
, i=1,...,m, at the surface in the neighbourhood of the 

cell S. Figure 4 illustrates the technique.  

   

 

   

For each xi we have the equation 2αxi+2βyi+γ =xi
2
+yi

2
, i = 1,...,m. The least squares 

approximation can be obtanined solving the normal equations:  
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The value of the curvature is then given by  

 

In case the system Eq. (7) is singular, a best fit line is computed using A
t⋅A, A

t⋅B, A
t⋅C, 

B
t⋅B, and B

t⋅C, and the curvature is set to zero.  

This procedure determines κ but for the signal, which can be determined comparing 

the normal at the center of the cell ηc determined based on neighbouring cells 

classification, and the normal of the circumference at the point closest to the center of 

the cell ηs. In case ηc
t
 ηs > 0 the sign is correct.  

   

Implementation 

GENSMAC2D uses two types of representation for cell data: a matrix representation, 

that allows for representing all kinds of cells, that is efficient in obtaining information 

about neighbour cells; and a tree representation, which allows for representing 

specific cell groups with complementary information.  

To illustrate the importance of the tree representation let us consider that for each B 

(Boundary) cell in contact with a F (Full) or S (Surface) cell, it is necessary to 

compute the intersection of some segments with the surface that defines the rigid 

boundary. This computation is expensive, but does not need to be repeated at each 

time step if the rigid boundary is not moving. Therefore, in this case, GENSMAC2D 

performs these computations only once, and stores the results in a tree data structure 

for later usage.  

The tree data representation can also store all the data required for the computation of 

the curvature. Each node stores a matrix (called coef) with dimension 4×4, where the 

first three lines contain the matrix and the independent vector of Eq. (7), and in the 

last line are stored the number of points (particles) used, the components of the 

normal vector at the center of the cell, and the value of the curvature. The normal 

vector at the center of the cell, first computed according to section 1, is used to 

determine the sign of the curvature, and it is recomputed using the least squares 

approach at the point of the circle closer to the center of the cell.  



At each time step, S cells are redefined, and this matrix is updated: coef[i][j] = 0 

(i=1,...,3 and j=1,...4), coef[4][1] = 0 (number of particles) coef[4][2] = (ηc)x, 

coef[4][3] = (ηc)y and coef[4][4] = 0 (curvature).  

Routine CURVATURE is described in the following steps:  

1. Do for each particle:  

2. Do for each cell whose distance from its center to the particle is less than a 

prescribed value:  

3. Compute:  

4. a = 2xi, b = 2yi, c = 1, d = xi
2
 + yi

2
  

5. Update matrix coef :  

coef[1][1] = coef[1][1] +a
2
, coef[1][2] = coef[1][2] +ab  

coef[1][3] = coef[1][3] +ac, coef[1][4] = coef[1][4] +ad  

coef[2][2] = coef[2][2] +b
2
, coef[2][3] = coef[2][3] +bc  

coef[2][4] = coef[2][4] +bd, coef[3][3] = coef[3][3] +c
2
  

coef[3][4] = coef[3][4] +cd, coef[4][1] = coef[4][1] +1 

6. End Do  

7. End Do  

8. Do for each cell S:  

9. Solve linear system Eq.(7)  

10. Compute κ and store in coef[4][4]  

11. Compute and store coef[4][2] = (ηc)x and coef[4][3] = (ηc)y  

12. End Do  

   

Validation of the Code  

A number of tests were performed to validate the code and to assess its robustness and 

precision. In this section some representative results will be presented. In the 

following subsections the numerical results obtained in this code will be compared 

with analytical solutions in the case of the sessile and pendant drop, and for the 

problem of the oscillating drop. Finally, complex free surface flow simulations show 

the effectiveness of the subgrid undulation remotion algorithm described above.  

   

Sessile and Pendant Drops  

To validate the computation of the capillary pressure using the method described in 

this work, and show the robustness of the method we simulated a sessile and a 

pendant drops. The semi-analytical solutions were obtained by numerical integration 

of the equations for the position of the interface using a fourth-order Runge-Kutta 

method, and they can be regarded as being very accurate.  



A quantitative comparison of the two results can be obtained comparing the numerical 

and the analytical predicted value of the pressure at the meniscus. Results of this 

comparison, summarized in Table 1 and Fig. 5, show a very good agreement between 

the analytical and numerical values.  

   

 

   

   

 

   

Oscillation of a Drop  

The previous tests proved the accuracy of the capillary pressure computations in 

hydrostatic conditions. To show the correct dynamical behaviour of the code we 

solved the problem of the oscillating drop, which has an analytical solution for the 

case of infinitesimal perturbations. Solution for this problem in the case of the 

axisymmetric bubble can be found in Lamb (1932), and has been used by other 

authors (Agresar et al., 1998) to validate both the two-dimensional and the 

axisymmetric cases. The parameters for these tests were: the density ρ = 1⋅10
3
 Kg/m

3
, 

the viscosity ν = 1⋅10
-6

 m
2
/s, the undisturbed radius of the drop R = 1⋅10

-2
 m, the 

amplitude of the perturbation, A = 0.3⋅10
-3

 m. Contrary to the case where the external 

flow is also computed, in these simulations the domain of computation can be chosen 

to be barely larger than the drop itself. Therefore a domain with -1.1⋅10
2
 m ≤ x ≤ 

1.1⋅10
2
 m and -1.1⋅10

2
 m ≤ y ≤ 1.1⋅10

2
 m discretized using a uniform 50×50 mesh was 
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adopted for these tests. Table 1 shows the comparison of numerical and the analytical 

values of the period of oscillation of the drop for various values of surface tension σ. 

The excellent agreement between these values shows the correctness of the code and 

the high accuracy attainable using the proposed approach.  

   

 

   

Subgrid Undulation Removal  

In the previous tests the viscous and surface tension effects at the cell level were 

sufficient to prevent the occurrence of undulations at the subgrid level. However, in 

cases of higher Reynolds number flows, and regions with strong surface area 

reduction, subgrid undulation may occour and cause a degradation of the overall 

precision of the computation, interfering with the computation of the curvature. The 

effect of applying the algorithm described in section 1.1 for the suppression of 

undulations can be seen in the following test.  

In this test, a complex free surface flow simulation of the filling of a container is 

performed. The parameters for these tests were: the domain is 0.0m ≤ x ≤ 0.05m, 0.0m 

≤ y ≤ 0.05m, and it is discretized using a uniform 50×60 (coarse grid) mesh and 

100×120 (refined grid) mesh; the density is ρ = 1⋅10
3
 Kg/m

3
; the viscosity is ν = 

0.001m
2
/s; the surface tension is σ = 0.01 N/m; the inflow dimension is 0.004m; the 

inflow velocity is 0.5 m/s; and the internal dimensions of the container are width = 

0.044m and height = 0.052m. Figures 6-9 show a comparison of the results obtained 

in several simulations with different resolutions, surface tension, and subgrid 

undulation removal settings. 
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Figure 6 shows the case of a coarse and a refined grid without surface tension or 

subgrid undulation removal. The finer grid shows much smaller undulations than the 

coarse grid, indicating that the undulations observed in the coarse grid are due to 

numerical errors that can be reduced by grid refinement.  

Figure 7 shows results from three simulations in the coarse grid. The dashed curve 

corresponds to the case in which no surface tension nor TSUR were applied. The 

dotted line corresponds to the case with TSUR only, and the solid line corresponds to 
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the case with surface tension and TSUR. The undulations observed in the dashed line 

are completely removed by using the TSUR method. Also, it can be seen that TSUR 

does not introduce a significant surface tension effect on the large scale undulations, 

as can be observed comparing it with the case with surface tension (solid line).  

Figure 8 shows a comparison of two simulations with surface tension, one without 

TSUR (dashed line), and the other with TSUR (dotted line). It can be observed that 

the result without TSUR is severely distorted due to errors introduced by the 

undulations in the computation of the surface tension.  

Figure 9 shows a comparison of three simulations, one without surface tension or 

TSUR in the finer grid (dashed line), one with both surface tension and TSUR in the 

finer grid (dotted line), and one with both surface tension and TSUR in the coarse 

grid. We observe a close agreement between the coarse and the fine grid solutions. 

These comparisons show that the algorithm for subgrid undulation removal can be 

beneficial because it helps in obtaining physically correct results in cases where the 

resolution would otherwise be insufficient to produce accurate results. The accuracy 

of the surface tracking is potentially much higher than the cell spacing, and to account 

for small scale surface tension effects explicitly by the surface tension at the cell level 

would require a prohibitively high refinement of the grid. Therefore, the subgrid 

undulation removal algorithm can result in substancial savings in terms of required 

computational resources in complex free surface flow simulations.  

   

Conclusions 

In the present work we described a method which allows the incorporation of surface 

tension forces into the GENSMAC2D code. This is achieved on two scales. First on 

the scale of a cell, the surface tension effects were incorporated into the free surface 

boundary conditions through the computation of the capillary pressure. The required 

curvature was estimated by fitting a least square circle to the free surface using the 

tracking particles in the cell and in its close neighbors. This approximation resulted in 

improved surface normal estimates which can be used in a more accurate 

implementation of the boundary conditions. On a sub-cell scale, short wavelength 

perturbations were filtered out using a local 4-point stencil which is mass 

conservative. The technique consists of modifying the positions of the two "internal" 

particles of the stencil such that the surface length and curvature are minimized, while 

still preserving volume. An efficient implementation is obtained through a dual 

representation of the cell data, using both a matrix representation, for ease at 

identifying neighbouring cells, and also a tree data structure, which permits the 

representation of specific groups of cells with additional information pertaining to that 

group. The resulting code was shown to be robust, and to produce accurate results 

when compared with exact solutions of selected fluid dynamic problems involving 

surface tension. In particular, the sessile drop, the pendant drop, and the oscillating 

drop were simulated.  

Comparisons between low and high resolution simulations with and without 

Trapezoidal Surface Undulation Removal (TSUR), showed that the TSUR algorithm 
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can be beneficial. It allows one to obtain physically correct results in cases where the 

resolution would otherwise be insufficient to produce accurate results. In addition, it 

can result in significant savings in terms of required computational resources in 

complex free surface flow simulations. 
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