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Abstract

We use the lubrication approximation to investigate the steady flow of slender

non-uniform rivulets of a viscous fluid on an inclined plane that is either heated or

cooled relative to the surrounding atmosphere. Four non-isothermal situations in which

thermocapillary effects play a significant role are considered. We derive the general

equations for a slender rivulet subject to gravity, surface tension, thermocapillarity

and a constant surface shear stress. Similarity solutions describing a thermocapillary-

driven rivulet widening or narrowing due to either gravitational or surface-tension

effects on a non-uniformly heated or cooled substrate are obtained, and we present

examples of these solutions when the substrate temperature gradient depends on the

longitudinal coordinate according to a general power law. When gravitational effects

are strong there is a unique solution representing both a narrowing pendent rivulet and

a widening sessile rivulet whose transverse profile always has a single global maximum.

When surface-tension effects are strong there is a one-parameter family of solutions

representing both a narrowing and a widening rivulet whose transverse profile has either

a single global maximum or two equal global maxima and a local minimum. Unique

similarity solutions whose transverse profiles always have a single global maximum

are also obtained for both a gravity-driven and a constant-surface-shear-stress-driven

rivulet widening or narrowing due to thermocapillarity on a uniformly heated or cooled

substrate. The solutions in both cases represent both a narrowing rivulet on a heated

substrate and a widening rivulet on a cooled substrate (albeit with infinite width in

the gravity-driven case).

1Tel 0141 548 3820, fax 0141 552 8657, email s.k.wilson@strath.ac.uk
2Tel 0141 548 3645, fax 0141 552 8657, email b.r.duffy@strath.ac.uk
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1 Introduction

Rivulets occur in a wide variety of practical situations ranging from heat exchangers, con-

densers and evaporators to industrial coating processes. In many situations (such as, for

example, in many geophysical flows) gravity plays an important role, while in others (such

as, for example, in the flow of rain-water on the windscreen of a moving car) the presence of

an external air flow is significant. There are also situations, such as in microscopic fluidic de-

vices (see, for example, Kataoka and Troian [1]), in which thermocapillary effects due to the

variation of surface tension with temperature play an important role. In this paper we shall

consider steady rivulet flows driven by gravity, thermocapillarity or a constant surface shear

stress on a heated or cooled inclined plane when thermocapillary effects play a significant

role.

Smith [2] obtained a similarity solution describing the steady gravity-driven draining

of a slender non-uniform rivulet of viscous fluid from a point source or to a point sink on

an inclined plane in the absence of surface-tension effects; subsequently Duffy and Moffatt

[3] obtained the corresponding solution when surface-tension effects are dominant. Smith’s

[2] solution predicts that the width of the rivulet increases or decreases according to an

x3/7 power law and the height correspondingly decreases or increases like x−1/7, where x

is the longitudinal coordinate. These predictions are in excellent agreement with Smith’s

own experimental results and with the numerical results of Schwartz and Michaelides [4].

Duffy and Moffatt [3] found that when surface-tension effects are dominant, the power laws

are modified to x3/13 for the width and x−1/13 for the height. Wilson, Duffy and Hunt

[5] used the approach of Smith [2] and Duffy and Moffatt [3] to obtain the corresponding

similarity solutions describing a slender non-uniform rivulet of a non-Newtonian power-law

fluid driven by either gravity or a constant surface shear stress down an inclined plane. The

same approach has also been used by Wilson, Duffy and Davis [6] to study the closely related

problem of a slender dry patch in an infinitely wide thin film draining under gravity down

an inclined plane.

The pioneering analysis of the steady unidirectional gravity-driven flow of a uniform

rivulet of viscous fluid down an inclined plane was performed by Towell and Rothfeld [7] who
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calculated the profile of the rivulet numerically and found excellent agreement with their own

experimental results. Allen and Biggin [8] and Duffy and Moffatt [9] used the lubrication

approximation to obtain analytically the solution when the cross-sectional profile of the

rivulet transverse to the direction of flow is thin. Duffy and Moffatt [9] also interpreted their

results as describing the locally unidirectional flow down a locally planar substrate whose

local slope varies slowly in the longitudinal direction. This approach was recently used by

Holland, Duffy and Wilson [10] to investigate locally uniform (but not locally unidirectional)

gravity-driven rivulet flow down a uniformly heated or cooled slowly varying substrate when

thermocapillary effects play a significant role. In particular, they found that the variation

in surface tension drives a transverse flow that causes the fluid particles to spiral down the

rivulet in helical vortices.

The pioneering work on non-isothermal thin-film flow was performed by Burelbach,

Bankoff and Davis [11] who included the effects of mass loss or gain, vapour recoil, thermo-

capillarity, surface tension, gravity and long-range intermolecular attraction in their analysis

of a two-dimensional thin film of fluid on a uniformly heated or cooled horizontal substrate.

This work laid the foundations for a large number of subsequent studies (see, for example,

the discussion in [10] and the references therein) on a wide variety of steady and unsteady

non-isothermal thin-film flows. In addition there have also been various studies of other

thin-film flows in which the surface shear stress and/or pressure gradient due to an external

airflow are significant (see, for example, the discussion in [5] and the references therein).

Oron, Davis and Bankoff [12] and Holland [13] review some of the recent work on both

isothermal and non-isothermal thin-film flows.

In this paper we use the lubrication approximation to investigate the steady flow of slen-

der non-uniform rivulets of a viscous fluid on an inclined plane that is either heated or cooled

relative to the surrounding atmosphere. Four non-isothermal situations in which thermo-

capillary effects play a significant role are considered. The general equations for a slender

rivulet subject to gravity, surface tension, thermocapillarity and a constant surface shear

stress are derived. Similarity solutions describing a thermocapillary-driven rivulet widening

or narrowing due to either gravitational or surface-tension effects on a non-uniformly heated

or cooled substrate are obtained. Similarity solutions are also obtained for a gravity-driven
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and a constant-surface-shear-stress-driven rivulet widening or narrowing due to thermocap-

illarity on a uniformly heated or cooled substrate. In a companion paper to the present work

Holland, Wilson and Duffy [14] study slender dry patches in an infinitely wide film flowing

steadily on a heated or cooled inclined plane in the four analogous situations.

2 Problem formulation

We consider the steady flow of a thin symmetric rivulet of viscous fluid with uniform density

ρ, viscosity µ, specific heat c and thermal conductivity kth on a heated or cooled plane inclined

at an angle α (0 ≤ α ≤ π) to the horizontal, when there is an imposed constant shear stress

on the free surface and the surface tension of the fluid varies linearly with temperature. We

consider both sessile rivulets (when 0 ≤ α < π/2) and pendent rivulets (when π/2 < α ≤ π)

as well as rivulets on a vertical substrate (when α = π/2). Cartesian coordinates Oxyz with

the x axis down the line of greatest slope and the z axis normal to the substrate are adopted,

with the substrate at z = 0. The edges of the rivulet are at y = ±ye(x). The geometry of

the problem is shown in Fig. 1. The velocity u = (u, v, w) = (u(x, y, z), v(x, y, z), w(x, y, z)),

pressure p = p(x, y, z), and temperature T = T (x, y, z) of the fluid are governed by the mass

conservation, Navier–Stokes and energy equations

∇ · u = 0, (1)

ρ(u · ∇)u = −∇p + µ∇2u + ρg, (2)

ρc(u · ∇)T = kth∇2T, (3)

where g = g(sin α, 0,− cos α) is acceleration due to gravity. On the substrate z = 0 the

appropriate boundary conditions are zero velocity and a prescribed (in general non-uniform)

temperature T0 = T0(x, y):

u = 0, T = T0; (4)

on the free surface z = h(x, y) the appropriate boundary conditions are normal and tangential

stress balances and an energy balance, which take the forms

n · T · n = −γκ, (5)
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t1 · T · n = t1 · ∇γ + τ, (6)

t2 · T · n = t2 · ∇γ, (7)

−kth∇T · n = αth(T − T∞), (8)

together with the kinematic condition on z = h, which may be written in the form

ūx + v̄y = 0, (9)

where

ū =
∫ h

0
u dz, v̄ =

∫ h

0
v dz (10)

are the local fluxes in the longitudinal and transverse (i.e. in the x and y) directions re-

spectively. Here T denotes the stress tensor of the fluid, n is the unit normal vector to the

free surface, t1 and t2 are unit tangential vectors to the free surface in the longitudinal and

transverse planes respectively (i.e. in the (x, z) and (y, z) planes, respectively), τ is the im-

posed constant shear stress on the free surface in the longitudinal plane, T∞ is the prescribed

uniform temperature of the passive atmosphere above the rivulet, γ = γ(T ) is the surface

tension, αth is the surface heat-transfer coefficient and κ = ∇·n is twice the mean curvature

of the free surface. The surface tension is assumed to depend linearly on temperature T

according to

γ(T ) = γr − λ(T − Tr), (11)

where Tr is a reference temperature taken to be the temperature of the substrate at some

position x = x0, y = 0, γr is the surface tension when T = Tr, and λ = −dγ/dT is a positive

constant; Tr may be greater than or less than T∞, corresponding to the substrate at x = x0,

y = 0 being hotter or colder than the atmosphere respectively. The prescribed volume flux

of fluid down the rivulet is given by

Q =
∫ ye

−ye

∫ h

0
u dz dy, (12)

where Q is a positive constant. At the edges of the rivulet y = ±ye where h = 0 a condition

must be specified concerning the contact angle β = β(x, ye(x)). For example, β may be

assumed to satisfy a fixed-contact-angle condition, or to depend on the substrate temperature

in a prescribed way; however for our purposes it is not necessary to be specific about this

condition.
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Following the approach of Smith [2] and Duffy and Moffatt [3] we consider a slender

rivulet for which the length scale in the x direction is much greater than that in the y

direction which in turn is much greater than that in the z direction, and so we scale the

system as follows:

x = lx∗, y = ǫly∗, z = ǫδlz∗, h = ǫδlh∗,

u = Uu∗, v = ǫUv∗, w = ǫδUw∗, β = δβ∗,

p =
µU

δ2l
p∗, τ =

µU

ǫδl
τ ∗, γ = γrγ

∗, Q = ǫ2δl2U,

T = T∞ + (Tr − T∞)T ∗, T0 = T∞ + (Tr − T∞)T ∗

0 ,

(13)

where ǫ ≪ 1 and δ ≪ 1 are the longitudinal and transverse aspect ratios respectively (i.e.

the aspect ratios in the (x, z) and (y, z) planes, respectively), U is the longitudinal velocity

scale, and l is the longitudinal length scale. Provided that the appropriate Reynolds and

Peclet numbers are sufficiently small (i.e. R = ǫ2δ2ρlU/µ ≪ 1 and P = ǫ2δ2ρclU/kth ≪ 1),

the scaled governing equations at leading order are (with superscript stars dropped)

ux + vy + wz = 0, (14)

ǫS sin α + δuzz = 0, (15)

−py + vzz = 0, (16)

−pz − S cos α = 0, (17)

Tzz = 0, (18)

with the boundary conditions

u = v = w = 0, T = T0 (19)

on the substrate z = 0, and

−p =
1

C
γhyy, (20)

uz = − 1

∆C
(Tx + hxTz) + τ, (21)
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vz = − 1

ǫ2∆C
(Ty + hyTz), (22)

Tz + BT = 0 (23)

on the free surface z = h; from (11) the surface tension γ is given by

γ = 1 − δ2C

ǫ2∆C
(T − 1), (24)

evaluated on z = h. The flux condition (12) may now be written as

1 =
∫ ye

−ye

ū dy. (25)

At y = 0 the free surface satisfies the regularity conditions

hy = 0, hyyy = 0; (26)

at the contact line y = ye(x) we have

h = 0, hy = −β. (27)

Four non-dimensional parameters arise in these leading-order equations, namely the Stokes

number S, the capillary number C, the thermocapillary number ∆C and the Biot number

B, defined by

S =
ǫδ3ρgl2

µU
, C =

ǫµU

δ3γr

, ∆C =
µU

ǫδλ(Tr − T∞)
, B =

ǫδαthl

kth

. (28)

Integrating (14)–(18) subject to (19) on z = 0 and (20)–(23) on z = h yields

p = S cos α(h − z) − 1

C
γhyy, (29)

u =
ǫS sin α

δ
(2h − z)

z

2
+ τz − 1

∆C

(

T0

1 + Bh

)

x
z, (30)

v = −py(2h − z)
z

2
− 1

ǫ2∆C

(

T0

1 + Bh

)

y
z, (31)

w = pyhy
z2

2
+pyy(3h−z)

z2

6
− ǫS sin α

δ
hx

z2

2
+

1

2∆C

[

(

T0

1 + Bh

)

xx
+

1

ǫ2

(

T0

1 + Bh

)

yy

]

z2, (32)

T = T0

(

1 − Bz

1 + Bh

)

, (33)
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and substituting (30) and (31) into (10) we find

ū =
ǫS sin α

δ

h3

3
+ τ

h2

2
− 1

∆C

h2

2

(

T0

1 + Bh

)

x
, (34)

v̄ = −py
h3

3
− 1

ǫ2∆C

h2

2

(

T0

1 + Bh

)

y
. (35)

The kinematic condition (9) now yields the governing partial differential equation for h:




h3

3

{

S cos αh − 1

C
hyy +

δ2

ǫ2∆C

(

T0

1 + Bh
− 1

)

hyy

}

y

+
1

ǫ2∆C

h2

2

(

T0

1 + Bh

)

y





y

−
[

ǫS sin α

δ

h3

3
+ τ

h2

2
− 1

∆C

h2

2

(

T0

1 + Bh

)

x

]

x

= 0, (36)

which is to be solved subject to (26) and (27), and the flux condition (25), which takes the

form

1 =
∫ ye

−ye

ǫS sin α

δ

h3

3
+ τ

h2

2
− 1

∆C

h2

2

(

T0

1 + Bh

)

x
dy. (37)

Equations (36) and (37) are rather general equations for a slender rivulet subject to

gravity, surface tension, thermocapillarity and a constant surface shear stress. Particular

forms of these equations have been studied previously for both isothermal and non-isothermal

flow. Smith [2] obtained a similarity solution describing a non-uniform isothermal gravity-

driven rivulet in the absence of surface-tension effects; in this case the two gravity terms

in (36) (that is, the terms in S) are dominant with the gravity term dominating the flux

condition (37). Duffy and Moffatt [3] obtained the corresponding similarity solution when

the dominant balance in (36) is between surface tension (represented by the term in 1/C)

and gravity (represented by the term in S sin α), with gravity again dominating the flux

condition (37). Wilson, Duffy and Hunt [5] solved a generalised (but isothermal) version

of (36) and (37) to obtain similarity solutions describing a non-uniform rivulet of a non-

Newtonian power-law fluid driven by either gravity or a constant surface shear stress. Duffy

and Moffatt [9] considered the locally unidirectional gravity-driven flow of an isothermal

rivulet, so that the gravity and surface-tension terms in (36) are dominant. Holland, Duffy

and Wilson [10] considered the corresponding locally uniform (but not locally unidirectional)

non-isothermal flow on a uniformly heated or cooled substrate, in which case the dominant

balance in (36) is between gravity, surface tension and thermocapillarity (represented by the

term in 1/ǫ2∆C).
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In the present work we shall obtain similarity solutions in four non-isothermal situations

in which thermocapillary effects play a significant role, namely a rivulet driven by thermo-

capillarity that is widening or narrowing due to either gravity or surface tension, and a rivulet

driven by either gravity or a constant surface shear stress that is widening or narrowing due

to thermocapillarity.

Following the approach of Smith [2] and Duffy and Moffatt [3] we seek similarity solutions

of (36) and (37) for h of the form

h = bf(x)G(η), η =
y

ye(x)
, (38)

in which the constant b (included for convenience) and the functions f = f(x), ye = ye(x)

and G = G(η) are to be determined, with G satisfying the regularity conditions

G′(0) = G′′′(0) = 0 (39)

and the contact-line condition

G(1) = 0, (40)

where a prime denotes differentiation with respect to argument. Solutions of the form (38)

cannot, in general, satisfy a prescribed contact-angle condition of the type discussed earlier.

The isothermal similarity solutions obtained by Smith [2] and Duffy and Moffatt [3] have a

similar shortcoming; however, Wilson, Duffy and Davis [6] showed how these solutions can

be modified locally near the contact line to accommodate a fixed-contact-angle condition

by incorporating sufficiently strong slip at the solid/fluid interface into the model. Similar

analyses are presumably possible for the present problems but are not attempted here.

Evidently we must have ye ≥ 0 and h ≥ 0 for the solution (38) to be physically relevant,

and without loss of generality we therefore take b and f to be positive and ye and G to be

non-negative. In the sections that follow, x0 (which may be infinite) is chosen such that

ye(x0) = 0, and solutions in both x ≤ x0 and x ≥ x0 will be considered. We denote the

height of the rivulet along its centre line by hm = h(x, 0).
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3 Thermocapillary-driven rivulet widening or narrow-

ing due to gravity

In this section we consider a thermocapillary-driven rivulet that is widening or narrowing due

to gravity (i.e. the case in which the first and last terms dominate (36) and the thermocapil-

lary term dominates (37)). We consider a rather general non-uniform substrate temperature

distribution that depends on x but is independent of y, i.e. T0 = T0(x). For later convenience

we write T0 in the form

T0 = 1 −
∫ x

x0

θ(x̃) dx̃, (41)

satisfying T0(x0) = 1, T0,x = −θ and T0,y = 0, where θ = θ(x) is a prescribed function of x.

Setting S| cos α| = 1/|∆C| = 1 we find that ǫ, δ and U are given by

ǫ =

(

ρg| cos α|Qµ

λ2(Tr − T∞)2

)
1

3

≪ 1, δ =

(

λ|Tr − T∞|
ρg| cos α|l2

)
1

2

≪ 1, U =

(

λ5|Tr − T∞|5Q2

ρg| cos α|µ4l6

)
1

6

. (42)

The remaining terms in (36) and (37) are negligible provided that

1

C
≪ 1, B ≪ ǫ2, τ ≪ 1, | tan α| ≪ δ

ǫ
,

δ2

ǫ2
≪ 1, (43)

which, in particular, mean that surface tension, surface heat transfer and surface shear stress

must be sufficiently small, and that α ≪ 1 or π − α ≪ 1 (so that the substrate is horizontal

or nearly horizontal). In this case the governing equations (36) and (37) reduce to

(h3hy)y −
3σT σc

2
(h2θ)x = 0 (44)

and

1 = σT θ
∫ ye

−ye

h2

2
dy (45)

at leading order, where we have written

σT = sgn(Tr − T∞), σc = sgn(cos α), (46)

so that σT = ±1 correspond to the substrate at x = x0, y = 0 being hotter or colder than

the surrounding atmosphere respectively, and σc = ±1 correspond to a sessile or a pendent

rivulet respectively. Note that (45) requires σT θ > 0; in particular, this means that θ must

be of one sign.
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Seeking a solution of (44) and (45) in the form (38) we have

(G3G′)′ +
3σT σcC1

2b2
(ηG2)′ = 0 (47)

and

1 =
σT b2C2

2

∫ 1

−1
G2 dη, (48)

where

C1 =
θyey

′

e

f 2
= −(θf 2)′y2

e

f 4
, C2 = θf 2ye (49)

are constants.

In the special case C1 = 0 the equation for G is simply G′ = 0 with the trivial solution

G = G0, where G0 is an undetermined constant. Evidently this solution cannot satisfy the

contact-line condition (40); however we can truncate it at |η| = 1 to obtain the one-parameter

family of solutions (parameterised by the constant ye > 0)

h =

∣

∣

∣

∣

∣

1

θye

∣

∣

∣

∣

∣

1

2

for |y| ≤ ye, (50)

representing a parallel-sided rivulet of arbitrary width whose transverse (but not, in general,

longitudinal) profile is uniform.

In the general case C1 6= 0 the product of C1 and C2 in (49) leads to (y3
e )

′ = 3C1C2θ
−2.

If we define the function J = J(x) by

J =
∫ x

x0

θ(x̃)−2 dx̃, (51)

then provided that C1C2J ≥ 0 we have

ye = (3C1C2J)
1

3 . (52)

From C2 in (49) we find that

f =

(

C2
2

3C1θ3J

)
1

6

. (53)

With the choice b = |3C1/2|1/2 equation (47) reduces to

GG′ + sη = 0, (54)
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where s = σcσT sgn(C1) = sgn (cos αy′

e). A real and positive solution for G is possible only

when s = 1, in which case (54) can be integrated subject to the contact-line condition (40)

to yield

G = (1 − η2)
1

2 (55)

(so that G(0) = 1 and G′(1) = −∞). From the flux condition (48) we find that σc = C1C2,

where we have made use of the facts that s = 1 and

∫ 1

−1
G2 dη =

∫ 1

−1
(1 − η2) dη =

4

3
. (56)

Thus we obtain the unique solution

h =
∣

∣

∣

∣

9

8θ3J

∣

∣

∣

∣

1

6

(

1 − y2

y2
e

)
1

2

, ye = |3J |
1

3 , (57)

which is valid provided that s = sgn(cos α(x − x0)) = 1. The solution (57) represents both

a narrowing (y′

e < 0) pendent (cos α < 0) rivulet in x ≤ x0, and a widening (y′

e > 0) sessile

(cos α > 0) rivulet in x ≥ x0. Provided that θ(x0) is finite and non-zero for |x0| < ∞ we

have J = O(x − x0) as x → x0, and hence hm = O(|x − x0|−1/6) and ye = O(|x − x0|1/3) in

this limit.

From (42) and (43) the conditions for these solutions to be valid can be expressed as

ǫ ≪ 1, δ ≪ 1,

(

λ4(Tr − T∞)4γ3
r

(ρg| cos α|)5Q2µ2

)
1

6

≪ l, 1 ≪
(

k6
th(ρg| cos α|)5Q2µ2

α6
thλ

7|Tr − T∞|7
)

1

6

, l ≪ λ|Tr − T∞|
τ

,

l ≪
(

λ7|Tr − T∞|7
(ρg| cos α|)5 tan6 αQ2µ2

)
1

6

,

(

λ7|Tr − T∞|7
(ρg| cos α|)5Q2µ2

)
1

6

≪ l.

(58)

We proceed by giving the details of the solution when C1 6= 0 for a particular choice of

the substrate temperature gradient. As a simple example we consider a power-law substrate

temperature gradient with θ = xk, where k is a constant. Considering solutions for x ≥ 0

(so that θ ≥ 0 and x0 ≥ 0) we have from (51)

J =































x1−2k − x1−2k
0

1 − 2k
k 6= 1

2
,

log
x

x0

k =
1

2
.

(59)
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Evidently a solution with x0 = 0 is possible only for k < 1/2, and a solution with x0 = ∞
is possible only for k > 1/2. In the general case k 6= 1/2 the solution (57) is

h =

∣

∣

∣

∣

∣

9(1 − 2k)

8x3k(x1−2k − x1−2k
0 )

∣

∣

∣

∣

∣

1

6
(

1 − y2

y2
e

)
1

2

, ye =

∣

∣

∣

∣

∣

3(x1−2k − x1−2k
0 )

1 − 2k

∣

∣

∣

∣

∣

1

3

, (60)

and in the special case k = 1/2 it is

h =

∣

∣

∣

∣

∣

9

8x3/2 log x/x0

∣

∣

∣

∣

∣

1

6
(

1 − y2

y2
e

)
1

2

, ye = |3 log x/x0|
1

3 , (61)

both of which are valid provided that s = 1. In particular, in the special case of a uniform

temperature gradient θ = 1 (that is, when k = 0) we find from (60) that hm = |9/8(x−x0)|1/6

and ye = |3(x − x0)|1/3.

Figures 2–4 show the solutions for hm, ye and h in cases with k = 0 (< 1/2), k = 1/2 and

k = 1 (> 1/2) respectively, for a range of values of x0. These figures show both narrowing

(y′

e < 0) pendent (cos α < 0) rivulets in x ≤ x0 (represented by the dashed lines in the figures

for hm and ye), and widening (y′

e > 0) sessile (cos α > 0) rivulets in x ≥ x0 (represented

by the solid lines in the figures for hm and ye). As the figures show, for x0 > 0 we have

hm = O(x−k/2) and ye = O(1) as x → 0+ when k < 1/2, and hm = O(xm) and ye = O(xn)

as x → 0+ when k > 1/2, where m = −(1 + k)/6 and n = (1 − 2k)/3. On the other hand,

for x0 = 0 (in which case k < 1/2) we have hm = O(xm) and ye = O(xn) as x → 0+.

Moreover for x0 < ∞ we have hm = O(xm) and ye = O(xn) as x → ∞ when k < 1/2, and

hm = O(x−k/2) and ye = O(1) as x → ∞ when k > 1/2. On the other hand, for x0 = ∞ (in

which case k > 1/2) we have hm = O(xm) and ye = O(xn) as x → ∞. In the special case

k = 1/2 for 0 < x0 < ∞ we have hm = O(|x3/2 log x|−1/6) and ye = O(| log x|1/3) both as

x → 0+ and as x → ∞.

Holland [13] gives details of the solution (57) for two further choices of the substrate

temperature gradient, namely an exponential temperature gradient and a spatially periodic

temperature gradient.
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4 Thermocapillary-driven rivulet widening or narrow-

ing due to surface tension

In this section we consider a thermocapillary-driven rivulet that is widening or narrowing

due to surface tension (i.e. the case in which the second and last terms dominate (36)

and the thermocapillary term dominates (37)). As in section 3, the substrate temperature

distribution is taken to be in the form (41). Setting C = |∆C| = 1 we find that ǫ, δ and U

are given by

ǫ =

(

γrQµ

λ2(Tr − T∞)2l2

)
1

5

≪ 1, δ =

(

λ|Tr − T∞|Q2µ2

γ3
r l

4

)
1

10

≪ 1,

U =

(

λ7|Tr − T∞|7Q4

γrµ6l8

)
1

10

.

(62)

The remaining terms in (36) and (37) are negligible provided that

ǫS sin α

δ
≪ 1, S| cos α| ≪ 1, B ≪ ǫ2, τ ≪ 1,

δ2

ǫ2
≪ 1, (63)

which, in particular, mean that gravity, surface heat transfer and surface shear stress must be

sufficiently small; however, unlike in the case considered in section 3, there is no restriction

on α and so the solutions are valid for 0 ≤ α ≤ π. In this case the governing equations (36)

and (37) reduce to

(h3hyyy)y +
3σT

2
(h2θ)x = 0 (64)

and (45) at leading order, where σT is given by (46). As in section 3, θ must be of one sign.

Seeking a solution of (64) and (45) in the form (38) we have

(G3G′′′)′ +
3σT C3

2b2
(ηG2)′ = 0 (65)

and (48), where

C3 =
θy3

ey
′

e

f 2
= −(θf 2)′y4

e

f 4
(66)

is a constant.

In the special case C3 = 0 the equation for G is simply G′′′ = 0 with the solution

G = G0(1 − η2), where G0 is an undetermined constant, and hence we obtain the one-

14



parameter family of solutions (parameterised by the constant ye > 0)

h =

∣

∣

∣

∣

∣

15

8θye

∣

∣

∣

∣

∣

1

2
(

1 − y2

y2
e

)

, (67)

representing a parallel-sided rivulet of arbitrary width whose transverse profile is parabolic.

In the general case C3 6= 0 the product of C2 in (49) and C3 in (66) leads to (y5
e )

′ =

5C2C3θ
−2. Provided that C2C3J ≥ 0 (where the function J = J(x) is defined by (51)) we

have

ye = (5C2C3J)
1

5 , (68)

and so from C2 in (49) we have

f =

(

C4
2

5C3θ5J

)
1

10

. (69)

With the choice b = |3C3/2|1/2 equation (65) reduces to

GG′′′ − sη = 0, (70)

where s = σT sgn(C3) = sgn(y′

e). Unlike in the case described in section 3, we cannot find

G explicitly in this case, and so equation (70) was solved numerically, using a Runge-Kutta

method within the computer algebra package Mathematica, subject to (39), (40) and the

condition G(0) = G0. Equation (70) was also obtained by Wilson, Duffy and Hunt [5] for

a rather different physical problem (namely a constant-surface-shear-stress-driven rivulet of

a power-law fluid with strong surface tension) and the present numerical results agree with

theirs, although they were calculated using a different method. Figure 5 shows numerically

calculated solutions of (70) in the cases (a) s = 1 and (b) s = −1 for a range of values

of G0. Figure 5 shows that when s = 1, G is non-negative everywhere on [0, 1] only if

G0 ≥ G0c ≃ 0.4277 and always has a single maximum at η = 0, whereas when s = −1,

G is non-negative everywhere on [0, 1] for all G0 ≥ 0 and has a single maximum at η = 0

when G0 ≥ G∗

0 ≃ 0.2138, but otherwise has two equal global maxima G = Gm(G0) at

η = ±ηm(G0) and a local minimum at η = 0. A local analysis shows that the behaviour of

G as η = 1 − ξ → 1− is either

G = A0ξ + (A1 + B1logξ)ξ2 + (A2 + B2logξ)ξ3 + o(ξ3), (71)

15



where the constants B1, A2 and B2 are given by

B1 = − s

2A0

, A2 =
1

6A3
0

[

sA0(A0 + A1) +
11

12

]

, B2 = − 1

12A3
0

, (72)

but the constants A0 > 0 and A1 are undetermined locally, or if s = 1

G =
(

8

3

)

1

2

ξ
3

2 +
(

1

6

)

1

2

ξ
5

2 − 5

204

(

3

8

)

1

2

ξ
7

2 + O
(

ξ
9

2

)

, (73)

which has zero slope at η = 1.

From the flux condition (48) we find that 3I|C2C3|/4 = 1, where we have defined

I =
∫ 1

−1
G2 dη. (74)

Figure 6 shows I plotted as a function of G0 for both s = 1 and s = −1. As Fig. 6 shows,

I satisfies I ≃ 0.0163 at G0 = 0 when s = −1, I ≃ 0.1731 at G0 = G0c when s = 1, and

I ∼ 16G2
0/15 as G0 → ∞.

Thus we obtain the one-parameter family of solutions (parameterised by G0 ≥ 0)

h =
∣

∣

∣

∣

24

5I4θ5J

∣

∣

∣

∣

1

10

G

(

y

ye

)

, ye =
∣

∣

∣

∣

20J

3I

∣

∣

∣

∣

1

5

, (75)

where G satisfies (70), which is valid for both s = 1 and s = −1, where s = sgn(x−x0). The

solution (75) represents both a narrowing (y′

e < 0) rivulet with s = −1 in x ≤ x0 (which is

analogous to the case cosα < 0 in section 3), and a widening (y′

e > 0) rivulet with s = 1 in

x ≥ x0 (which is analogous to the case cosα > 0 in section 3). Provided that θ(x0) is finite

and non-zero for |x0| < ∞ we have J = O(x−x0) as x → x0, and hence hm = O(|x−x0|−1/10)

and ye = O(|x − x0|1/5) in this limit.

From (62) and (63) the conditions for these solutions to be valid can be expressed as

ǫ ≪ 1, δ ≪ 1,

l ≪
(

λ13|Tr − T∞|13γr

(ρg sin α)10Q4µ4

)
1

12

, l ≪
(

λ4(Tr − T∞)4γ3
r

(ρg| cos α|)5Q2µ2

)
1

6

,

l ≪
(

k2
thγr

α2
thλ|Tr − T∞|

)
1

2

, l ≪ λ|Tr − T∞|
τ

,
λ|Tr − T∞|

γr

≪ 1.

(76)
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As an example we consider again the case of a power-law substrate temperature gradient

with θ = xk for x ≥ 0. In the general case k 6= 1/2 the solution (75) is

h =

∣

∣

∣

∣

∣

24(1 − 2k)

5I4x5k(x1−2k − x1−2k
0 )

∣

∣

∣

∣

∣

1

10

G

(

y

ye

)

, ye =

∣

∣

∣

∣

∣

20(x1−2k − x1−2k
0 )

3(1 − 2k)I

∣

∣

∣

∣

∣

1

5

, (77)

and in the special case k = 1/2 it is

h =

∣

∣

∣

∣

∣

24

5I4x5/2 log x/x0

∣

∣

∣

∣

∣

1

10

G

(

y

ye

)

, ye =

∣

∣

∣

∣

∣

20 log x/x0

3I

∣

∣

∣

∣

∣

1

5

. (78)

In particular, in the special case of a uniform temperature gradient θ = 1 (that is, when

k = 0) we find from (77) that hm = |24/5I4(x − x0)|1/10 and ye = |20(x − x0)/3I|1/5.

In the case s = 1 the solutions for hm, ye and h are qualitatively similar to those given

in section 3 and so are omitted for the sake of brevity. However in the case s = −1 the

transverse profile of the rivulet has one global maximum at y = 0 (as in section 3) for

G0 ≥ G∗

0 but two equal global maxima and a local minimum at y = 0 for G0 < G∗

0. This

latter behaviour is illustrated in Fig. 7, which shows the solution for h in the case θ = x (i.e.

k = 1) when s = −1, G0 = 0.1 (< G∗

0) and x0 = 10.

For x0 > 0 we have hm = O(x−k/2) and ye = O(1) as x → 0+ when k < 1/2, and

hm = O(xm) and ye = O(xn) as x → 0+ when k > 1/2, where m = −(1 + 3k)/10 and

n = (1− 2k)/5. On the other hand, for x0 = 0 (in which case k < 1/2) we have hm = O(xm)

and ye = O(xn) as x → 0+. Moreover for x0 < ∞ we have hm = O(xm) and ye = O(xn)

as x → ∞ for k < 1/2, and hm = O(x−k/2) and ye = O(1) as x → ∞ for k > 1/2. On the

other hand, for x0 = ∞ (in which case k > 1/2) we have hm = O(xm) and ye = O(xn) as

x → ∞. In the special case k = 1/2 for 0 < x0 < ∞ we have hm = O(|x5/2 log x|−1/10) and

ye = O(| log x|1/5) both as x → 0+ and as x → ∞.

Holland (2002) gives details of the solution (75) for the two further choices of the substrate

temperature gradient mentioned in section 3.
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5 Gravity-driven rivulet widening or narrowing due to

thermocapillarity

In this section we consider a gravity-driven rivulet on a uniformly heated or cooled substrate

(so that T0 ≡ 1) that is widening or narrowing due to thermocapillarity (i.e. the case in which

the fourth and fifth terms dominate (36) and the gravity term dominates (37)). Setting

ǫS sin α/δ = B/ǫ2|∆C| = 1 we find that ǫ, δ and U are given by

ǫ =

(

αthλ|Tr − T∞|
kthρg sin αl

)
1

2

≪ 1, δ =

(

k2
thρg sin αQµ

α2
thλ

2(Tr − T∞)2l2

)
1

3

≪ 1,

U =

(

kth(ρg sin α)2Q2

αthλ|Tr − T∞|µl

)
1

3

.

(79)

The remaining terms in (36) and (37) are negligible provided that

1

C
≪ 1, τ ≪ 1,

δ

ǫ
≪ | tan α|, (80)

which, in particular, mean that surface tension and surface shear stress must be sufficiently

small, and that α is not near 0 or π (so that the substrate is not horizontal or nearly

horizontal). Similarity solutions cannot be found when B 6= 0, and therefore we restrict our

attention to the adiabatic limit B → 0. In this case the governing equations (36) and (37)

reduce to

σT (h3)yy + 2(h3)x = 0 (81)

and

1 =
∫ ye

−ye

h3

3
dy (82)

at leading order, where σT is given by (46).

Seeking a solution of (81) and (82) in the form (38) we have

(G3)′′ + 6σT

(

f ′y2
e

f
G3 − yey

′

eηG2G′

)

= 0 (83)

and

1 =
b3f 3ye

3

∫ 1

−1
G3 dη. (84)

In this case we find that the relevant forms for f and ye are

f = (cx)−
1

6 , ye = (cx)
1

2 , (85)
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with the constant c to be determined; without loss of generality we have taken x0 = 0 here.

Then from (83) the equation for G is

G′ − cσT

3
ηG = 0, (86)

which can be integrated to yield

G = G0 exp
(

cσT

6
η2

)

, (87)

where G0 = G(0). The solution (87) does not satisfy the contact-line condition (40), but if

this condition is dropped then we can interpret the solution when cσT < 0 (which satisfies

G → 0 as η → ∞) as an infinitely wide “rivulet”. (Note that the solution when cσT > 0 is

also infinitely wide, but satisfies G → ∞ as η → ∞.) With the choice b = 31/3, and with G

substituted from (87), equation (84) is replaced by

1 =
∫ +∞

−∞

G3 dη = G3
0

∫ +∞

−∞

exp
(

cσT

2
η2

)

dη = G3
0

(

−2πσT

c

)

1

2

, (88)

and hence

c = −2πσT G6
0. (89)

Thus we obtain the unique solution

h =
(

−9σT

2πx

)

1

6

exp

(

σT y2

6x

)

, (90)

which is valid provided that σT x < 0. Hence the unique solution (90) represents both

a “narrowing” rivulet (y′

e < 0) in x < 0 when the substrate is heated (σT = 1), and a

“widening” rivulet (y′

e > 0) in x > 0 when the substrate is cooled (σT = −1). The free-

surface temperature (1 + Bh)−1 = 1−Bh + O(B2) is a decreasing function of h. In the case

when the substrate is heated (σT = 1) the surface tension γ = 1 + σT δ2Ch(1 + Bh)−1 =

1 + σT δ2Ch + O(B) is an increasing function of h, and hence there is a gradient of surface

tension that drives a transverse flux inwards away from y = ±ye and towards y = 0, causing

the rivulet to narrow and deepen. In the case when the substrate is cooled (σT = −1) the

converse holds, causing the rivulet to widen and shallow. Figure 8 shows the solution for h

in the case σT = −1; the corresponding solution in the case σT = 1 is a reflection of this in

the plane x = 0.
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From (79) and (80) the conditions for these solutions to be valid can be expressed as

ǫ ≪ 1, δ ≪ 1,

(

k13
th (ρg sin α)5γ6

r Q
2µ2

α13
thλ13|Tr − T∞|13

)
1

7

≪ l, l ≪ kth(ρg sin α)5Q2µ2

αthλ|Tr − T∞|τ 6
,

k7
th(ρg sin α)5Q2µ2

α7
thλ

7|Tr − T∞|7 tan6 α
≪ l.

(91)

6 Shear-stress-driven rivulet widening or narrowing due

to thermocapillarity

In this section we consider a shear-stress-driven rivulet on a uniformly heated or cooled

substrate (so that, as in section 5, T0 ≡ 1) that is widening or narrowing due to thermocap-

illarity (i.e. the case in which the fourth and sixth terms dominate (36) and the shear-stress

term dominates (37)). Setting τ = B/ǫ2|∆C| = 1 we find that ǫ, δ and U are given by

ǫ =

(

α2
thλ

2(Tr − T∞)2Qµ

k2
thl

3τ 3

)
1

5

≪ 1, δ =

(

k3
thQµτ 2

α3
thλ

3|Tr − T∞|3l3
)

1

5

≪ 1,

U =

(

kthQ
2τ 4

αthλ|Tr − T∞|µ3l

)
1

5

.

(92)

The remaining terms in (36) and (37) are negligible provided that

ǫS sin α

δ
≪ 1, S| cos α| ≪ 1,

1

C
≪ 1, (93)

which, in particular, mean that gravity and surface tension must be sufficiently small; how-

ever, unlike in the case considered in section 5, there is no restriction on α and so the

solutions are valid for 0 ≤ α ≤ π. As in section 5, we restrict our attention to the adiabatic

limit B → 0. In this case the governing equations (36) and (37) reduce to

σT (h3)yy + 3(h2)x = 0 (94)

and

1 =
∫ ye

−ye

h2

2
dy (95)

at leading order, where σT is given by (46).
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Seeking a solution of (94) and (95) in the form (38) we have

(G3)′′ +
6σT

b

(

f ′y2
e

f 2
G2 − yey

′

e

f
ηGG′

)

= 0 (96)

and

1 =
b2f 2ye

2

∫ 1

−1
G2 dy. (97)

In this case we find that the relevant forms for f and ye are

f = (cx)−
1

5 , ye = (cx)
2

5 , (98)

with the constant c to be determined; without loss of generality we have again taken x0 = 0

here. With the choice b = |2c/5| equation (96) reduces to

G′ − sη = 0, (99)

where s = σT sgn(c). A real and positive solution for G is possible only when s = −1, in

which case (99) can be integrated subject to (40) to yield

G =
1

2
(1 − η2) (100)

(so that G(0) = 1/2 and G′(1) = −1). From (97) we have

c = −σT

(

375

8

)

1

2

. (101)

Thus we obtain the unique solution

h =
1

2

(

−45σT

2x

)

1

5

(

1 − y2

y2
e

)

, ye =

(

375x2

8

)
1

5

, (102)

which is valid only for σT x < 0. Hence the unique solution (102) represents both a narrowing

rivulet (y′

e < 0) in x < 0 when the substrate is heated (σT = 1), and a widening rivulet

(y′

e > 0) in x > 0 when the substrate is cooled (σT = −1). This behaviour is qualitatively

the same as that described in section 5 and has the same physical explanation. Figure 9

shows the solution for h in the case σT = −1; the corresponding solution in the case σT = 1

is a reflection of this in the plane x = 0.

From (92) and (93) the conditions for these solutions to be valid can be expressed as

ǫ ≪ 1, δ ≪ 1,

kth(ρg sin α)5Q2µ2

αthλ|Tr − T∞|τ 6
≪ l,

k6
th(ρg| cos α|)5Q2µ2

α6
thλ

6(Tr − T∞)6τ
≪ l,

k2
thγrτ

α2
thλ

2(Tr − T∞)2
≪ l. (103)
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7 Conclusions

In this paper we used the lubrication approximation to investigate the steady flow of slender

non-uniform rivulets of a viscous fluid on an inclined plane that is either heated or cooled

relative to the surrounding atmosphere. Four non-isothermal situations in which thermo-

capillary effects play a significant role were considered. We derived the general equations for

a slender rivulet subject to gravity, surface tension, thermocapillarity and a constant surface

shear stress. Similarity solutions describing a thermocapillary-driven rivulet widening or

narrowing due to either gravitational or surface-tension effects on a non-uniformly heated or

cooled substrate were obtained, and we presented examples of these solutions when the sub-

strate temperature gradient depends on the longitudinal coordinate x according to a general

power law. In the case of strong gravitational effects we found a unique solution represent-

ing both a narrowing pendent rivulet and a widening sessile rivulet whose transverse profile

always has a single global maximum at y = 0. In the case of strong surface-tension effects

we found a one-parameter family of solutions (parameterised by G0 ≥ 0) representing both a

narrowing and a widening rivulet. In this case we found that for a widening rivulet a solution

is possible only for G0 ≥ G0c ≃ 0.4277 and the transverse profile of the rivulet always has a

single global maximum at y = 0, whereas for a narrowing rivulet there is a solution for all

G0 whose transverse profile has a single global maximum at y = 0 for G0 ≥ G∗

0 ≃ 0.2138,

but otherwise has two equal global maxima and a local minimum at y = 0. We also ob-

tained unique similarity solutions whose transverse profiles always have a single maximum

describing both a gravity-driven and a constant-surface-shear-stress-driven rivulet widening

or narrowing due to thermocapillarity on a uniformly heated or cooled substrate. The solu-

tions in both cases represent both a narrowing rivulet on a heated substrate and a widening

rivulet on a cooled substrate (albeit with infinite width in the gravity-driven case). In the

Appendix we show that the equations governing the free-surface profile in sections 3, 5 and

6 (but not section 4) may be converted (by appropriate changes of variables) to a nonlinear

diffusion problem of standard type for which there are known similarity solutions.
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Appendix

In this appendix we show that the problems defined by (44) and (45) in section 3, (81) and

(82) in section 5, and (94) and (95) in section 6 (but not (64) and (45) in section 4) may be

converted to a nonlinear diffusion problem of standard type of the form

ut = (unux)x, q =
∫ a(t)

−a(t)
u dx (n ≥ 0) (A1)

for u = u(x, t) in the unbounded domain −∞ < x < ∞ for t ≥ 0, to be solved subject

to some appropriate initial condition (at t = 0), and hence in these cases we recover the

solutions found earlier from known similarity solutions of (A1). In (A1) q is a prescribed

constant, and x = ±a(t) are the edges of the diffusing zone, outside of which u(x, t) = 0; in

the case n = 0 the edges are at x = ±∞ for t > 0.

For n > 0 problem (A1) has the similarity solution [15, 16]1

u(x, t) =

(

nq2

2(n + 2)K2t

)
1

n+2

(1− η2)
1

n , η =
x

a
, a =

(

2(n + 2)qnt

nKn

)
1

n+2

if |η| ≤ 1 (A2)

for t > 0 (with u = 0 for |η| > 1), where

K =
∫ 1

−1
(1 − η2)

1

n dη =
√

π
Γ( 1

n
+ 1)

Γ( 1
n

+ 3
2
)
. (A3)

For n = 0 problem (A1) has the similarity solution

u(x, t) =
q√
4πt

exp

(

−x2

4t

)

(A4)

1Note that there is a typographical error in equation (32) of [15]: the coefficient of x
2 should be squared;

however, their expression (37) for the position of the advancing front is correct.
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for −∞ < x < ∞ and t > 0; more generally for n = 0 problem (A1) has the solution

u(x, t) =
1√
4πt

∫

∞

−∞

u(ξ, 0) exp

(

−(x − ξ)2

4t

)

dξ (A5)

for t > 0. The solution (A4) may be obtained from (A5) with the choice u(x, 0) = qδ(x),

where δ(x) denotes the Dirac delta function.

In section 3 we found that the thickness h of a slender thermocapillary-driven rivulet

that is widening or narrowing due to gravity satisfies (44) and (45). Substituting

h(x, y) =

(

3σT u(J, y)

θ

)
1

2

, J =
∫ x

x0

1

θ(x̃)2
dx̃, y = Y (A6)

with u ≥ 0 we obtain

(uuY )Y = σcuJ ,
2

3
=

∫ Ye

−Ye

u dY, (A7)

where Ye(J) = ye(x). This is of the form (A1) with n = 1 and q = 2/3, and so from (A2)

and (A3) we find that K = 4/3, and that with x and t identified with Y and σcJ (> 0)

respectively, a solution for u is

u =
1

2(3σcJ)
1

3

(

1 − Y 2

Y 2
e

)

, Ye = (3σcJ)
1

3 ; (A8)

thus a solution for h is given by (57) for J cos α > 0.

In section 5 we found that the thickness h of a slender gravity-driven rivulet that is

widening or narrowing due to thermocapillarity satisfies (81) and (82). Substituting

h(x, y) = (3u)
1

3 , x = −2σT X, y = Y (A9)

with u ≥ 0 we obtain

uY Y = uX , 1 =
∫

∞

−∞

u dY. (A10)

This is of the form (A1) with n = 0 and q = 1, and so from (A4) we find that a solution for

u is

u =
1√
4πX

exp

(

− Y 2

4X

)

(A11)

in X > 0; thus a solution for h is given by (90) for σT x < 0. Moreover from (A5) the solution

for h satisfying h(0, y) = h0(y) is

h =
(

− 1

2πσT x

)

1

6

[

∫

∞

−∞

h0(ξ)
3 exp

(

(y − ξ)2

2σT x

)

dξ

]
1

3

(A12)
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for σT x < 0. The similarity solution (90) may be obtained from (A12) with the choice

h0(y) = [3δ(y)]1/3.

In section 6 we found that the thickness h of a slender shear-stress-driven rivulet that is

widening or narrowing due to thermocapillarity satisfies (94) and (95). Substituting

h(x, y) = u
1

2 , x = −2σT X, y = Y (A13)

with u ≥ 0 we obtain

(u
1

2 uY )Y = uX , 2 =
∫ Ye

−Ye

u dY, (A14)

where Ye(X) = ye(x). This is of the form (A1) with n = 1/2 and q = 2, and so from (A2)

and (A3) we find that K = 16/15 and that a solution for u is

u =
(

45

128X

)

2

5

(

1 − Y 2

Y 2
e

)2

, Ye =

(

375X2

2

)
1

5

; (A15)

thus a solution for h is given by (102) for σT x < 0.

References

[1] D. E. Kataoka and S. M. Troian, Patterning liquid flow on the microscopic scale, Nature

402 (1999) 794–797.

[2] P. C. Smith, A similarity solution for slow viscous flow down an inclined plane, J. Fluid

Mech. 58 (1973) 275–288.

[3] B. R. Duffy and H. K. Moffatt, A similarity solution for viscous source flow on a vertical

plane, Euro. J. Appl. Math. 8 (1997) 37–47.

[4] L. W. Schwartz and E. E. Michaelides, Gravity flow of a viscous liquid down a slope

with injection, Phys. Fluids 31 (1988) 2739–2741.

[5] S. K. Wilson, B. R. Duffy and R. Hunt, A slender rivulet of a power-law fluid driven

by either gravity or a constant shear stress at the free surface, Quart. J. Mech. Appl.

Math. 55 (2002) 385–408.

25



[6] S. K. Wilson, B. R. Duffy and S. H. Davis, On a slender dry patch in a liquid film

draining under gravity down an inclined plane, Euro. J. Appl. Math. 12 (2001) 233–

252.

[7] G. D. Towell and L. B. Rothfeld, Hydrodynamics of rivulet flow, A. I. Ch. E. J. 12

(1966) 972–980.

[8] R. F. Allen and C. M. Biggin, Longitudinal flow of a lenticular liquid filament down an

inclined plane, Phys. Fluids 17 (1974) 287–291.

[9] B. R. Duffy and H. K. Moffatt, Flow of a viscous trickle on a slowly varying incline,

Chem. Eng. J. 60 (1995) 141–146.

[10] D. Holland, B. R. Duffy and S. K. Wilson, Thermocapillary effects on a thin viscous

rivulet draining steadily down a uniformly heated or cooled slowly varying substrate,

J. Fluid Mech. 441 (2001) 195–221.

[11] J. P. Burelbach, S. G. Bankoff and S. H. Davis, Nonlinear stability of evaporat-

ing/condensing liquid films, J. Fluid Mech. 195 (1988) 463–494.

[12] A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev.

Mod. Phys. 69 (1997) 931–980.

[13] D. Holland, Thermocapillary effects in thin-film flows, Ph. D. thesis, University of

Strathclyde, Glasgow, United Kingdom, 2002.

[14] D. Holland, S. K. Wilson and B. R. Duffy, Similarity solutions for slender dry patches

with thermocapillarity, J. Eng. Maths 44 (2002) 369–394.

[15] Ya. B. Zel’dovich and A. S. Kompaneets, On the theory of heat propagation for

temperature-dependent thermal conductivity, Collection Commemorating the 70th An-

niversary of A. F. Joffe. Izv. Akad. Nauk SSSR (1950) 61–71.

[16] R. E. Pattle, Diffusion from an instantaneous point source with a concentration-

dependent coefficient, Q. J. Mech. Appl. Math. 12 (1959) 407–409.

26



Figure captions

Figure 1. Geometry of the problem.

Figure 2. A thermocapillary-driven rivulet widening or narrowing due to gravity: solutions

for (a) hm and (b) ye given by (57) in the case θ = 1 for both narrowing (y′

e < 0) pendent

(cos α < 0) rivulets in x ≤ x0 (represented by the dashed lines), and widening (y′

e > 0)

sessile (cos α > 0) rivulets in x ≥ x0 (represented by the solid lines) when x0 = 0, 1, ..., 10,

together with three-dimensional plots of h given by (57) in (c) the sessile case when x0 = 1,

and (d) the pendent case when x0 = 10.

Figure 3. As for Fig. 2 except that θ = x1/2 and (a) and (b) are exclusive of x0 = 0.

Figure 4. As for Fig. 2 except that θ = x and (a) and (b) are exclusive of x0 = 0.

Figure 5. Numerically calculated rivulet profiles G = G(η) obtained from (70) plotted as

a function of η when (a) s = 1 and (b) s = −1 for a range of values of G0.

Figure 6. The integral I = I(G0) given by (74) plotted as a function of G0 for both s = 1

and s = −1.

Figure 7. A thermocapillary-driven rivulet widening or narrowing due to surface tension:

numerically calculated three-dimensional plot of h given by (77) in the case θ = x when

s = −1, G0 = 0.1 and x0 = 10.

Figure 8. A gravity-driven rivulet widening or narrowing due to thermocapillarity: three-

dimensional plot of h given by (90) in the case σT = −1.

Figure 9. A shear-stress-driven rivulet widening or narrowing due to thermocapillarity:

three-dimensional plot of h given by (102) in the case σT = −1.
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