Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A characterisation of oscillations in the discrete two-dimensional convection-diffusion equation

Elman, H.C. and Ramage, Alison (2003) A characterisation of oscillations in the discrete two-dimensional convection-diffusion equation. Mathematics of Computation, 72. pp. 263-288. ISSN 0025-5718

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It is well known that discrete solutions to the convection-diffusion equation contain nonphysical oscillations when boundary layers are present but not resolved by the discretisation. However, except for one-dimensional problems, there is little analysis of this phenomenon. In this paper, we present an analysis of the two-dimensional problem with constant flow aligned with the grid, based on a Fourier decomposition of the discrete solution. For Galerkin bilinear finite element discretisations, we derive closed form expressions for the Fourier coefficients, showing them to be weighted sums of certain functions which are oscillatory when the mesh Pæ#169;clet number is large. The oscillatory functions are determined as solutions to a set of three-term recurrences, and the weights are determined by the boundary conditions. These expressions are then used to characterise the oscillations of the discrete solution in terms of the mesh Pæ#169;clet number and boundary conditions of the problem.