Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Defect estimation in Adams PECE codes

Higham, D.J. (1989) Defect estimation in Adams PECE codes. SIAM Journal on Scientific Computing, 10 (5). pp. 964-976. ISSN 1064-8275

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many modern codes for solving the nonstiff initial value problem $y'(x) - f(x,y(x)) = 0,y(a)$ given, $a leqq x leqq b$, produce, in addition to a discretised solution, a function $p(x)$ that approximates $y(x)$ over $[a,b]$. The associated defect $delta (x): = p'(x) - f(x,p(x))$ is a natural measure of the error. In this paper the problem of reliably estimating the defect in Adams PECE methods is considered. Attention is focused on the widely used Shampine-Gordon variable order, variable step code fitted with a continuously differentiable interpolant $p(x)$ due to Watts and Shampine [SIAM .J. Sci. Statist. Comput, 7 (1986), pp. 334-345]. It is shown that over each step an asymptotically correct estimate of the defect can be obtained by sampling at a single, suitably chosen point. It is also shown that a valid "free" estimate can be formed without recourse to sampling. Numerical results are given to support the theory.