Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Defect estimation in Adams PECE codes

Higham, D.J. (1989) Defect estimation in Adams PECE codes. SIAM Journal on Scientific Computing, 10 (5). pp. 964-976. ISSN 1064-8275

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Many modern codes for solving the nonstiff initial value problem $y'(x) - f(x,y(x)) = 0,y(a)$ given, $a leqq x leqq b$, produce, in addition to a discretised solution, a function $p(x)$ that approximates $y(x)$ over $[a,b]$. The associated defect $delta (x): = p'(x) - f(x,p(x))$ is a natural measure of the error. In this paper the problem of reliably estimating the defect in Adams PECE methods is considered. Attention is focused on the widely used Shampine-Gordon variable order, variable step code fitted with a continuously differentiable interpolant $p(x)$ due to Watts and Shampine [SIAM .J. Sci. Statist. Comput, 7 (1986), pp. 334-345]. It is shown that over each step an asymptotically correct estimate of the defect can be obtained by sampling at a single, suitably chosen point. It is also shown that a valid "free" estimate can be formed without recourse to sampling. Numerical results are given to support the theory.