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Introduction

Under a polarising microscope, liquid crystals exhibit beautiful optical patterns such as the Schlieren
texture of a nematic, the fingerprint texture of a cholesteric and the focal conic structure of smectics.
These textures are due to an assembly of topological defects and are determined by the molecular
ordering of the particular mesophase [1]. Such defect textures are useful in identifying liquid crystal
phases but are generally an unwanted effect causing a reduction in contrast of a liquid crystal display.
Whether needed for identification or unwanted in displays, a clear understanding of defects will
be extremely useful. Figure 1 shows a typical Schlieren texture, in the xy coordinate plane, of a

Figure 1: Schlieren texture of a nematic liquid crystal (from Date et al. [2])

nematic sample when it is placed between crossed polarisers (two polarisers with polarising directions
perpendicular to each other) and light is shone through the cell in the z direction. The presence
of crossed polarisers means that, at any point in the sample where the average molecular direction
(the director) is aligned with either one of the polarisers, the transmission of light through the cell is
blocked resulting in a dark area. When the director is not aligned with a polariser a lighter region is
visible. The lightest regions in Figure 1 occur when the director is at 45 degrees to both polarisers.
We can see from Figure 1 that there are points in the cell where the director orientation changes as
we trace a path around that point. In fact each such point is a line perpendicular to the xy-plane
called a disclination or defect line. For example, if we pick any point in Figure 1 where four dark
regions merge then trace a path around that point, in going from one dark region to another the
director has changed alignment from one polariser direction to the other polariser direction, in other
words by 90 degrees. In a full circuit the director must have rotated by 360 degrees. A full rotation
by 360 degrees indicates a disclination line of strength S = +1 or S = —1 (depending on whether
the director rotated clockwise or anti-clockwise as we went round the disclination). When two dark
regions merge at a point (usually a little harder to see) a defect of strength S = —i—% or § = —%
occurs.

In this paper we will consider the director structure around disclination lines of strength S = +%
and S = —%. Analysis has shown that only defects of half-integral strength are singular because
defects with integral strength can escape into the third dimension, the z direction in our case [3].
Figures 2(c) and 3(c) show director configurations for S = +1,—%. The director distortion that
occurs around these defects can be characterised by bend and splay distortion. When S = —i—%, bend
is dominant when = < 0, and splay is dominant when = > 0. When S = —% there are three regions
where bend is dominant, and three regions where splay dominates.

The lower plots in Figures 2 and 3 show the calculated transmission through the cell if the director
structure is placed between crossed polarisers which are aligned with the z and y axes. For a director

at an angle ¢ to the z-axis the transmission will be proportional to sin®(2¢).
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The properties of defects in liquid crystals have been discussed by many authors (see the reviews by
Chandrasekhar and Ranganath [1] and Kleman [3]) and have been described in terms of continuum
mechanics and in terms of topology. In this paper, we solve the Euler-Lagrange equations, derived
from a continuum description of the nematic material in terms of the director n, (whose solution will
be a minimum energy configuration) using analytic and numerical methods.

Theory

The bulk free-energy density of a deformed liquid crystal relative to an undeformed one was given
by Frank [4] as

F=—[ki1(V-n)?+kypn- -V xn)®+ ks(n x V xn)?, (1)
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where ki1, koo and k33 are the elastic constants which refer to splay, twist and bend distortions,
respectively and n is the director. The director is chosen to be of unit length |n| = 1 and to have
the symmetry n = —n. The V symbol denotes the usual gradient operator, (9/0z, 9/dy, 9/9z) in
cartesian coordinates, and - and X denote the scalar and vector products. The total free energy of
the system is then Ef = [;, F'dv, where the integration is over the volume of the liquid crystal region.
Consider a planar director structure in which n is confined to the xy-plane, so that

n= (COS ¢7 sin ¢7 0)7 ¢ = ¢($, y)' (2)

Using this expression for the director there will be no twist distortion in the region and thus the
only elastic constants to enter the free energy are splay, ki1, and bend, ks3. We will seek director
configurations which minimise the free energy of the system. In practice it is easier to work in
cylindrical polar coordinates and we seek a solution ¢(r,0) which depends on r, the distance from
the origin (z = 0, y = 0), and 0, the angle from the z-axis. From now on we will measure the angles
¢ and 0 in radians.

In this paper we consider how the minimum energy solution changes as the ratio of the elastic
constants kqj /kgs is altered. We concentrate on the two most common half strength defects, S = —}—%
and S = —%. As we will see, these defects have different amounts of splay and bend distortion and,
although when kq;/ks3 = 1 these defects look the same when viewed between crossed polarisers, we
find that when kq;/ks3 # 1 there is a significant difference.

Minimisation of the total free energy F yields the differential equation (the Euler-Lagrange equation)

for the director angle ¢
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where F is the free energy density in equation (1) and ¢, = 9¢/0r, ¢g = Op/00.

It should be noted at this point that for an infinite region of liquid crystal there is no intrinsic length
scale in this problem. No combination of the parameters ki1, kos and k33 will lead to a number
with the dimensions of length. For this reason, the governing equation derived from equation (3) is
unchanged under the transformation » — ar for any scaling factor a. This indicates that the solution
to the equation is independent of r. We will introduce boundaries into our problem in the form of
a inner and outer cylindrical surfaces at r = r. and r = r,, respectively, but since they preserve
the circular symmetry, the r-independent solution remains the minimum energy configuration. With
this assumption the director angle is now only dependent on the polar angle 6 and ¢(0) satisfies the
equation
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(ka3 — kuy) sin®(6 — 0) + kna <%) + (k33 — k11) sin(2(¢ — 6)) (% <%> - %) = 0. (4

Various solutions to this equation are immediately apparent (for example ¢ = 6 for any values of ki;
and kg3 or ¢ = SO+ ¢ when ky;/kss = 1 if S and ¢ are constant) but in general this equation cannot
be solved analytically because of the nonlinearity involved.



We can however observe some inherent symmetries in equation (4). The rotational transformation
0 — 0 + a with ¢ — ¢ + a leaves equation (4) unchanged. This allows us to choose the boundary
condition ¢(0) = 0 without loss of generality. If we were to want the more general condition ¢(0) = «
we would solve the system with ¢(0) = 0, to obtain ¢(0) = ¢o(0) say, and then the solution with
#(0) = a would be simply ¢(0) = ¢o(0) + a. A second transformation is § — —6 with ¢ — —¢
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Figure 2: Director configurations for an S = 42 disclination line with (a) ks3/ki1 = 0, (b) ks3/ki1 =
0.2, (¢) k11/kss = 1, (d) k11 /kss = 0.2, (e) k11/ks3 = 0 (numerical results). The upper plots show
the director configuration and the lower plots represent the transmission of such a structure when
placed between crossed polarisers.

which leaves equation (4) unchanged and thus the director angle at the position (r, —@) is simply
the negative of the director angle at (r, ). We therefore do not need to solve the equation over the
full domain (—7 < 6 < 7) but over the semi-infinite region 0 < # < 7. These two symmetries mean
that, without loss of generality, we may take the boundary conditions to be ¢(0) = 0 and ¢(7) = S7
where S is the power of the defect, :l:% in our case.

One last remark should be made about the size of the liquid crystal domain. We have assumed that
our nematic liquid crystal is contained in the region r, < r < r. It is not necessary to specify the
values of 7. and r., to solve equation (4) since this equation is independent of r. However, if the
liquid crystal region was not bounded by the cylinder at r = r., the energy of the system would
be infinite since we would have an infinite region of distorted liquid crystal. In reality, other defects
or cell surfaces would influence the director orientation at a certain distance from the centre of the
defect resulting in a finite energy. The region r < r,, can be thought of as the ‘zone of influence’
of the defect, outside of which other effects influence the director structure. The inner boundary at
r = r. is also necessary to achieve a finite energy. This is in fact the size of the ‘defect core’. In
this inner region the distortion is so high that a change in the nematic order occurs. An accurate
model of the defect core must include this change in order and it has been shown by Schopohl and
Sluckin [5] that there exists an amount of biaxiality in this region. In this paper, however, we are
modelling the region outside the defect core assuming that the nematic order parameter/biaxiality
remains constant and only the director varies.

Analytic solutions

As mentioned above, it is possible to obtain exact or approximate analytic solutions for a variety of
k11 and ks values. With elastic isotropy, when ki1 /ks3 = 1, equation (4) simplifies significantly to
(;27‘5 = 0 which, with the boundary conditions ¢(0) = 0 and ¢(7) = S, has the solution ¢ = S6. This
is the solution for any disclination strength S. The director structures for S = —l—% and S = —% are
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Figure 3: Director configurations for an § = —1 disclination line with (a) ksz/ki1 = 0, (b) ks3/ki1 =
0.2, (¢) ki1/kss = 1, (d) ki1/kss = 0.2, (e) ki11/kss = 0 (numerical results). The upper plots show
the director configuration and the lower plots represent the transmission of such a structure when
placed between crossed polarisers.

shown in Figures 2(c) and 3(c¢). Because of the isotropic elastic constants, there is an equal amount
of splay and bend distortion in these configurations. When ky; /kss # 1 this will not be the case and
the system will prefer either splay or bend distortion depending on which is smaller, k17 or kss.
From the director configurations in Figures 2(c¢) and 3(c¢) we can also calculate the effect of rotation
of the polarisers relative to the liquid crystal sample. If we rotate the polarisers anti-clockwise by
7/8 radians (22.5 degrees) the direction of the polarisers will be 7/8 and 57/8. The darkest regions
will then occur when the director is oriented such that ¢ = 7/8, ¢ = 57/8, ¢ = 9 /8 or ¢ = 137/8.
For the S = +3 defect ¢ = /2 so this occurs at the values § = 7/4 or = 5r/4. The dark regions
have rotated anti-clockwise by double the polariser rotation angle. However, for the S = —% defect
¢ = —0/2 so the new dark regions occur at the values § = —m/4 or § = —5n/4. The dark regions
have rotated clockwise by double the polariser rotation angle. In this way it is possible to distinguish
between positive and negative strength disclinations.

For the S = +% defect it is also possible to write down the exact analytic solution for the two extreme
cases of ki1/ksz = 0 and ks3/k1;; = 0. When ky;1/kss = 0 splay distortion contributes nothing to the
total energy and the liquid crystal will attempt to replace any bend distortion with splay distortion
in order to reduce the total energy. For the S = +% disclination it is possible to replace all bend
distortion with splay and Figure 2(e) shows such a director configuration. The analytic solution is
¢ =0 when 0 <0 <7m/2, ¢=75 when /2 < 0 < 3r/2 and ¢ = 0 — 7 when 37/2 < 0 < 2r. When
kss/k11 = 0 the opposite effect occurs: all of the splay distortion is replaced with bend distortion
and Figure 2(a) shows the director configuration. The analytic solution is ¢ = 0 when 0 < 6 < 7/2,
¢=0—7% when /2 < 0 < 37/2 and ¢ = 7 when 37/2 < 0 < 2m.

We can also determine an approximate analytic solution when the elastic constants are nearly equal.
If we take ki1 /ks3 = (1—¢) where € is a small positive number then, if € is small enough, it is reasonable
to assume that the solution to equation (4) is close to the solution ¢y, = S@ (which is the solution
when kjy/kss = 1 or when € = 0). When we consider ks3/k1; < 1 we will take ks3/k;n = (1 —¢),
although in this case the equation and solution changes slightly. We use the Taylor series expansion
of the solution at € = 0 in powers of €

O =+ Z €'¢; (5)
=1
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where € = 1 — 11, Substituting ; k“ = 1 — € into equation (4) gives

[1- ccoto— )] (0] - esintzo- e>>( (j‘ﬁ) j‘ﬁ) _ (©

By substituting equation (5) into equation (6) and equating coefficients of powers of € we get a
series of equations for the functions ¢;. Recall that, if we consider a strength S defect then the
boundary conditions require ¢(0) = 0 and ¢(7) = Sm. We can satisfy these boundary conditions
using only the first order term since ¢o(0) = 0 and ¢o(7) = S7. Therefore, the higher order terms in
equation (5) must have zero boundary conditions, ¢;(0) = 0 and ¢;(7) = 0. The first four functions
in the expansion are

$o(0) = SO
$1(0) = % sin(2(S — 1)0)
p2(0) = E ;2 sin(2(S —1)6)

S(S — 2)(552 — 108 + 4)

sin(4(S — 1)0)

256(S — 1)4 (7)
~ S(S—2)(715" — 28457 + 4405% — 3125 + 80)
S(S—2)(58* — 105 +4) .
( QQé(S “ 1y ) sin(4(S — 1)6)
S(S —2)(295* — 1165% + 1605% — 885 + 16) .
+ 6144(5 _ 110 sin(6(S — 1)8).

Here we can see that an extra mode is added in each of the terms. When € < 1, we expect a truncated
expansion series (we later consider the first six terms) to give a reasonably accurate solution since
higher order terms will be negligible. However, when € /~ 1, the truncated approximation is no longer
accurate unless the number of terms used in equation (5) is large.

Numerical Results

We can solve equation (4), for any value of k1;/ks3, using a standard numerical method. Discretising
equation (4) on a non-uniform grid and approximating derivatives with central finite differences, we
form a set of nonlinear equations F(®) = 0 where ® is the vector of ¢ values at each grid node. A
non-uniform grid is necessary in some cases when the director distortion becomes large and would
lead to significant discretisation errors on a uniform grid. The system of equations F(®) = 0 is
solved using the NAG routine c05nbf [6] by a modification of the Powell hybrid method.

In order for the NAG routine to work, we need a good initial guess. Since the analytic solution is
known for € = 0, we use this as an initial guess, and step up the value of € in discrete steps, using
each solution as an initial guess for the next calculation, until we reach the required value of e.

The numerical solutions for various values of € are shown in Figures 2 and 3. Figure 4(a) and (c)
shows a comparison of the approximate analytic solution equation (5) with the numerical solution
when € = 0.8 and S = +% and S = —%, respectively. Here only six terms of the analytic solution are
used, and we can see clearly that this gives very good agreement with the numerical solution.
Figure 4(b) and (d) shows the same comparison with € = 1. We can see that in this case the analytic
solution (again with six terms) does not match up well with the numerical solution, and, in fact, an
infinite number of terms of the analytic solution would be required for good accuracy.
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Figure 4: Comparison between the approximate analytic solution equation (5) with six terms and
the numerical solution for (a) S = +3, kii/kss = 0.2, (b) S = +3, kii/kss = 0.0 and for (c)
S = —%, ki1/kss = 0.2, (d) S = —%, k11/kss = 0.0. For ki;/kss = 0.2 the analytic solution is a good
approximation to the exact solution.

There are two important points to consider regarding the director configurations in Figures 2 and 3.
Firstly, it is clear that for a specific nematic material at a constant temperature (so that k7 /kss takes
a fixed value) the Schlieren pictures for ki;/kss # 1 will appear different for the two defects S = +%
and S = —1 (consider for example Figures 2(d) and 3(d)). Secondly, for a single defect (for example
S = 43 in Figures 2(c) and 2(d)) the Schlieren picture may be significantly different for different
values of ky;/kss. It is possible to calculate the angle between the regions of maximum transmission
in Figures 2 and 3 as a function of k11 /ks3 and also the rate of rotation of the maximum transmission
angle as the polarisers are rotated. It is therefore theoretically possible for the ratio kiq/kss to be
found by examining the Schlieren texture. However, to perform such a calculation accurately the
disclination line should have few external influences such as nearby defects and it would be extremely
difficult to make a measurement from a sample such as the one shown in Figure 1. Similar calculations
can be carried out for integer strength defects although the differences in the Schlieren picture are
not as obvious as for S = :I:%.
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