Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A review of moving mesh methods for the numerical solution of PDEs

Sloan, D.M. (2002) A review of moving mesh methods for the numerical solution of PDEs. In: Applied Mathematics Seminar, 2003-06-13.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Accurate modelling of scientific problems that are governed by partial differential equations (PDEs) with steep solution regions often involves high computational cost if a uniform mesh is used. In recent years a family of methods---moving mesh methods---has been developed that adapts the mesh to features of the computed solution. The nodal density is high in regions of high solution variation and low in regions where the solution variation is small. The talk describes moving mesh methods that are based on the idea of equidistribution (see, for example, W Huang and R D Russell, SIAM J Sci Comput 20 (1999) 998-1015). These methods utilise a PDE to evolve the mesh in a manner that accurately captures sharp fronts with a relatively small number of mesh points. The complete solution process involves the combined numerical solution of a moving mesh PDE and the governing system of physical PDEs. Numerical results are referenced to demonstrate the effectiveness of the methods.