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ABSTRACT

The deposition of fatty substances, particularly cholesterol and triglycerides, on arterial walls leads to
atherosclerosis. If the growth of this plaque remains unchecked it can obstruct the blood flow and, if a thrombus
forms, clots can break off and obstruct smaller arteries in other parts of the body. Recent investigative procedures
for assessing the degree of atherosclerosis use thermal imaging via a catheter. The spatial heterogeneity of the plaque
has a marked effect upon its thermal properties and it is possible to make inferences about the vulnerability of the
plaque to rupture. In this paper we will discuss our recent simulations of particle laden flows with wall deposition.
We will also discuss a methodology for estimating the thermal properties of these deposits which utilises their self-
similarity properties using fractal analysis and renormalisation. This latter approach also affords an analysis of the
conductivity (or percolation) threshold of two phase fractal media. The modelling is also applicable to the growth

and thermal properties of industrial fouling.

1 INTRODUCTION

The deposition of fatty substances, particularly choles-
terol and triglycerides, on arterial walls leads to atheroscle-
rosis (see Figure 1).

This problem can be further exacerbated by insulin defi-
ciencies caused by diabetes. The increase in lipid particles
being transported from the body’s fat reserves increases
the rate of deposition on the blood vessel walls. The most
common cause of acute coronary syndromes such as, my-
ocardial infarction, and sudden ischaemic cardiac death is
atherosclerotic plaque rupture [1]. It is vital therefore to be
able to detect unstable plaques so that some preventative
measures can be employed at an early enough stage. Al-
though the stress caused by the blood flow does play a role
it has been found that the degree of stenosis is a relatively
minor factor in predicting which plaques are most prone
to rupture. Recent experiments have found that there is a
measurable temperature difference between atherosclerotic
plaques and normal vessels [2]. An infrared angiothermog-
raphy catheter [3] and a thermistor probe catheter [4, 5]
have been employed for generating thermal maps of ar-
terial walls. The vulnerable plaques have a thin fibrous
cap and a soft lipid core composed of macrophages, full of
cholesterol, which release matrix-digesting enzymes during
apoptosis leading to plaque rupture [6]. The hotter arterial
wall regions, ranging from 0.1°C to 1.5°C, are caused by
the release of heat from these activated inflammatory cells.
Thus these thermal maps can identify the most likely sites
for plaque rupture.
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Figure 1: A coronary artery imaged by a 30MHz intravas-
cular ultrasound catheter. The catheter is of the phased
array type consisting of 64 elements and is 1.6mm dia.

The modelling of the transport and deposition of the
particles in the blood flow and the prediction of the thermal
properties of the plaque build-up would further the aims of
these thermal procedures [7-9]. Ideally the thermal prop-
erties would be predicted from the plaque geometry so that



ultrasound imaging as shown in Figure 1 or preferably a
non-invasive technique, could be employed. Indeed, recent
experimental evidence suggests that plaque geometry can
be used to predict plaque instability [10]. We have recently
derived a methodology which directly relates the thermal
conductivity of a fractal set to its geometry [11-13]. The
sets arise from deposition processes and are characterised
by the box counting fractal dimension of their pore struc-
ture.

In Section 2 we detail a generic approach to the simu-
lation of the deposition of particles from a fluid flow. Of
course the above aims are also applicable to the growth and
thermal properties of industrial fouling, and so we present
our recent work on the deposition of fine coal particles in
an electrostatic precipitator. In Section 3 the deposit ge-
ometry is analysed for its fractal properties which is then
used to provide an estimate of the thermal conductivity.

2 SIMULATION OF WALL DEPOSITION IN PAR-
TICLE LADEN FLOWS

In this section we detail a methodology for predicting

the deposition from a particle laden flow in a two-dimensional

rectangular channel. Although our goal is to highlight the
utility of this approach in the modelling of the deposition
processes in blood flow, we illustrate the method by dis-
cussing our recent work on particle deposition in an elec-
trostatic precipitator (ESP). This work was conducted in
conjunction with Groupement pour la Recherche sur les
Echangeurs Thermiques (GRETh) in Grenoble. The bulk
flow modelling and experimental work were conducted by
GRETh [14]. The carrier flow is obtained by direct numer-
ical simulation of an incompressible Newtonian fluid. A
Langrangian approach is used to track the monodispersed
spherical particles being transported by the fluid where it
is assumed that the particles do not disturb the flow and
there is no interaction between particles. In this paper
we focus on the near wall modelling and geometry of the
evolving deposit. This is acheived by a Monte Carlo sim-
ulation whose initial conditions are dictated by the bulk
flow calculations.
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Figure 2: The horizontal position of the particles as they
enter the boundary area, as determined by the bulk flow
calculations.

The geometry and the particle size in the simulation
are dictated by the experimental work [14]. Each electri-
cally charged thread in the ESP has a corresponding set
of deposition plates placed immediately after it in the flow
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Figure 3: The horizontal component of the velocity of the
particles as they enter the boundary area.
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Figure 4: The vertical component of the velocity of the
particles as they enter the boundary area.

direction. The gap between each plate is 3.25 mm and the
length of the deposit area is 65 mm. The bulk flow simula-
tion places 13 grid lines across the gap. The Monte Carlo
simulation describes the deposition process within the grid
nearest the deposit surface and this boundary area there-
fore has a height of 0.25 mm. We shall concentrate on
particles of mean diameter 1 ym. As our simulation is
on-lattice it will therefore require 250 grid lines in the ver-
tical direction to span 0.25 mm. Due to compiler memory
restrictions, the deposit region is simulated in horizontal
sections each of 210 grid lines. Each section is simulated in
series starting from the left hand edge of the deposit region.
The input data from the bulk flow simulation includes the
horizontal position of the particle as it enters the near wall
region and the horizontal and vertical components of its
velocity (see Figures 2-4). The particles enter this region
at the very edge of the deposit section (approximately the
first one percent). This gives an indication of the efficiency
with which this type of filter operates.

The forces acting on the particles before depositing in-
clude the electric field, the hydrodynamic drag, inertia and
diffusion. We have included all of these forces into the sim-
ulation. An indication of the relative size of each force in
both the flow and electric field direction can be estimated
from experiments [14]. The simulation proceeds by ran-
domly choosing from four possible directions of movement
whose probabilities are governed by the balance between
the forces. The four directions (N, S, E, W) have probabil-
ities (suitably normalised) given by,
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where C(‘Zé?usion’ C’ii{eftia’ Cd};{zi and Cflectric are con-
stants representing the magnitude of the diffusion, inertial,
drag and electric forces respectively, in the electric field (€)
and flow (F) directions. The horizontal and vertical veloc-
ity components of the particle are denoted by v, and v,.
Similarly, v{*® and vj*® are the velocity components of the
supporting gas stream. The particles are released from a
height of 0.25 mm in the y direction with its horizontal
distance supplied. The particle then travels according to
the probabilities given by Eq. (1) above. The particles are
released in series with the next being released after one of
the following occurs;

(i) the particle reaches a height of 248 yum,

(ii) the particle reaches either of the boundaries in the z
direction,

or

(iii) the particle touches the deposit region substrate or a
previously deposited particle. (Note that this simulation
uses a unit sticking probability and there is no
restructuring of the deposit such as compaction.)

The simulation ends once all particles have been released
or the height of the deposit reaches the top of the deposit
area. Details of the particles which are lost in (i) and (ii)
above are recorded and subsequently used as the initial
input to the simulation of the deposit area adjacent to
the present one. This process can continue until all the
particles have deposited or until the end of the deposit
section has been reached (this latter case would require a
large number of simulations, approximately 300).

Figure 5: Simulated deposit consisting of 7858 monodis-
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To test the approach we have simulated the deposition
on the upper face of the lowest deposition plate. The re-
sultant deposit is shown in Figure 5.

As can be seen the bulk of the particles are deposited
at the very start of the plate. The deposit is dendritic in
nature due to the omission of restructuring events in the
simulation. It is possible however to include some effects
such as deposit compaction. This deposit can be visually
compared to those found from experiment and the need for
restructuring assessed.

We have performed numerous experiments with the sim-
ulation, varying the force constants. These experiments

give rise to a wide variety of deposit structures and out-
puts. We have used the force ratios suggested by GRETh
[14] and found that there is an extremely high capture ef-
ficiency with the deposit growing very rapidly at the edge
of the plate. In the absence of any deposit restructuring
the deposit reaches the maximum height of the deposit re-
gion (0.25 mm) after only a small fraction of the particles
have been released. In the above example there is a frac-
tion of the particles which are travelling to the right with
a relatively high velocity. Thus with inertia present the
probability of travelling in this direction remains high. If
we project the number of simulations needed so that all the
particles will deposit we can see that this may be as much
as one or two hundred. This is still well within the total
length of the plate which contains roughly three hundred
sections. There is wide scope within the modelling frame-
work for more elaborate particle transport and deposit re-
structuring rules to reflect the particular application, for
instance in the build-up of atherosclerotic plaques.

3 THERMAL PROPERTIES OF DEPOSITS

There is growing experimental evidence that the de-
posits arising from particle laden flows are self-similar [13].
A typical deposit from a coal-fired, pulverised fuel power
plant is shown in Figure 6.

Figure 6: SEM digitised image of fouling structure in a
coal-fired, pulverised fuel power plant. Magnification is
x1190 (700 x 1024 pixels, 70pm x 100pm).



Viewed at a range of magnifications one recovers very
similar images and this property can be succinctly cap-
tured by the box counting fractal dimension, dimpgF', of
such materials. By analysing a simulated random structure
which has a predetermined size distribution of particles we
can further the understanding of the thermal properties
of these materials. The basis of this structure is the Sier-
pinski Carpet (SC). We can view the SC as a two phase
composite where either the removed squares (or tremas)
are conducting particles and the remaining set F' forms
the intervening pore network, or vice versa.

We start by analysing the former viewpoint to exam-
ine the percolation properties of the SC. Of course this
deterministic structure has several drawbacks as a model
of a fractal deposit.The particles occupy non-random po-
sitions, they are all surrounded by insulating pores, and
hence will never conduct, and there is only one size distri-
bution of particle diameters. These drawbacks can all be
overcome by randomly shuffling the tremas so that they
are allowed to come into contact with each other (with no
overlap) and assume any spatial location within the unit
square, and by altering the generation process to accom-
modate any desired size distribution. This latter point
has to be carefully handled and in doing so we arrive at
a family of SCs. Several authors have discussed random
SCs which also attempt to overcome these difficulties [15]
but this randomisation is more natural for our purposes
as the tremas are not restricted in their spatial location
by the generation algorithm but are allowed to occupy any
location which does not overlap with another trema. The
generation algorithm is analogous to the physical mixing or
blending of particles, with a predetermined size distribu-
tion, in a supporting matrix. We refer to the above family
of fractal sets as Shuffled Sierpinski Carpets (SSC) [13].

Given the recursive definition of the SSC and the in-
herent self-similarity it is natural to use renormalisation
to examine their thermal conductivity properties. In this
way we can also examine the dependency of the percola-
tion threshold of such sets on the length scale generator §
and generation level n. If we apply a standard real space
renormalisation group (RSRG) approach to estimate the
thermal conductivity of the SSC the method does not per-
form quite as well as in the random composite case [16].
This is not surprising as the central assumption in RSRG
is that the probability of occurence of each of the 16 config-
urations depends solely on the volume fraction of the each
phase. That is, it is assumed that both phases consist of
equal sized particles which are thoroughly mixed. How-
ever for the SSC the constituent particles are not mono-
dispersed but rather follow a power law size distribution
and can be thought of as a poorly mixed or lumpy ran-
dom composite. Therefore the probability structure which
underlies the RSRG theory must be altered to account for
this size distribution [12, 13]. The new model is able to
capture the deviation from the RSRG theory across the
full range of conducting phase probabilities. Importantly,
however, we are able to examine the dependency of the
percolation threshold of the SSC on é and n.

Of course these structures at the point of percolation
threshold have only a finite number of generation levels
and as such their box-counting dimension is defined over a
finite set of length scales. This is of course similar to any
naturally occurring fractal deposit. We are concerned here

with spanning clusters of conducting tremas embedded in
a fractal pore space F' and so the less able the pore space
is at filling space, the larger is the volume fraction of the
conducting phase and hence the fewer generation levels are
needed to achieve the percolation threshold. Therefore,
sets with a higher dimpF require more generation levels
to achieve a spanning cluster.

To utilise the SSC as a model for a deposit structure we
now change our viewpoint and demand that the tremas act
as insulating particles whilst the set F' forms the conduct-
ing network. Of course it is still possible to use a RSRG
approach to examine the thermal properties but we have
derived a recursive relationship which provides an estimate
for the thermal conductivity of a material as a function of
dimpF'. By utilising bounds on the thermal conductivity
o of random media in the limit of low porosity it can be
shown that [17, 13],

1— 5(27dimBF) n 5
13, (2)

where g is a morphological parameter characterising the
pore shape. For regular fractals the parameters &, dimpF'
and n are known but for random deposits these have to
be determined [13]. We can test this relationship by cal-
culating the effective thermal conductivity from a numer-
ical solution of the Laplace equation and application of
Fourier’s Law [18, 19]. Using finite-differences the discre-
tised Laplace equation is evaluated at the each grid cell
corner and the convergence rate is increased by successive
overrelaxation. Dirichlet boundary conditions are applied
at the gas stream and furnace wall interfaces, whilst pe-
riodic boundary conditions are imposed in the direction
parallel to the substrate in order to reduce edge effects.
In the interior, zero-flux boundary conditions are imposed
between the two phases. However this is a computationally
time consuming process and we are restricted to fractals
of low generation level.

The experimental images presented here do not include
in situ cross-sections of the fouling material due in part
to the high temperature environment. Thus at present
we have to rely on Monte Carlo simulations of deposit
growth to simulate comparable structures. This approach
has the benefit that we have complete control over the var-
ious transport mechanisms which give rise to the deposit
and explicit details of the geometry and how it evolves
with time. For the simulated deposit geometry of Figure
7 the calculated temperature field distribution is shown in
Figure 8.

o=(1-

The thermal conductivity is a decreasing function of
generation level since more insulating pores appear at each
level. The fractal approach compares favourably with these
estimates and the algorithm used to recover the underlying
length scale generator and fractal dimension is robust [13].
The power of the fractal approach is in its ability to pre-
dict the thermal conductivity from knowledge of the pore
size distribution and thus lends itself well to experimental
verification.

4 CONCLUSIONS

The build-up and rupture of atherosclerotic plaques on



Figure 7: A Monte Carlo simulation of a compacted de-
posit (2.5 x 105 mono-dispersed particles).

Figure 8: The steady-state temperature field distribution
in the deposit geometry in Figure 7.

arterial walls is the most common cause of acute coro-
nary syndromes. Experiments have shown that there is
a measurable temperature difference between atheroscle-
rotic plaques and normal vessels and this has led to ther-
mal imaging techniques being used to diagnose vulnerable
plaques. We have shown that the thermal conductivity
of randomly accumulated deposits can be estimated from
the geometry of the pore structure. We therefore suggest
that non-invasive techniques which only recover geomet-
rical information may be able to infer thermal properties
of the plaque. The geometry is characterised by its box
counting fractal dimension and an automated procedure
for recovering the length scale generator and generation
level is reported. This also enables the study of the perco-

lation threshold of a class of random fractals to be studied.
We also have shown that it is possible to model the trans-
port and deposition in a particle laden flow by coupling
together the Euler-Lagrangian bulk flow calculation with
a Monte Carlo simulation near the wall boundaries. To
model plaque formation we will need to develop the fractal
and renormalisation approach to provide estimates of the
thermal conductivity of deposits whose constituent parti-
cles have a range of thermal properties. The bulk flow and
Monte Carlo simulations will also need to be extended to
incorporate for instance, non-Newtonian fluid flow and the
geometry of the artery.
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NOMENCLATURE

All units have been non-dimensionalised.

Latin
dimgF  box counting dimension of the set F.
C constant magnitude of each force on the particle.
F (Shuffled) Sierpinski Carpet set.
g statistical morphological parameter.
n fractal generation level.
p volume fraction or probability.
)/ probability of particle on-lattice movement.
v velocity.
Greek

0 fractal length scale generator.

o thermal conductivity.
Subscripts

x direction parallel to substrate.

y direction normal to substrate.

Superscripts
£ electric field.
F  flow field.

gas gas stream.
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