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Abstract

We use a combination of analytical and numerical techniques to re-examine the
question posed by Moffatt [J. Méc. 16 (1977) 651-673] of determining the criti-
cal weights of fluid that can be maintained per unit length in a steady, smoothly
varying, two-dimensional film on either the outside (“coating flow”) or the in-
side (“rimming flow”) of a rotating horizontal cylinder. We use a pseudospectral
method to obtain highly accurate numerical solutions for éteady Stokes flow on
a cylinder and hence to calculate the critical weights. In particular, these cal-
culations reveal that the behaviour of the critical solutions in the thin-film limit
& — 0 (where § is the aspect ratio of the film) in an inner region near the hori-
zontal on the ascending side of the cylinder (where Moffatt’s leading-order outer
solution has a corner) are not captured by naive outer asymptotic solutions in
integer powers of §. Motivated by these numerical results we obtain the uniformly
valid critical asymptotic solutions in the thin-film limit to sufficient accuracy to
enable us to calculate the critical fluxes and weights to accuracies o(3%/3(log §)~3)
and o(0%/%(log §)~2) relative to Moffatt’s leading-order values, respectively. We
find that our asymptotic solutions for the critical weights are in good agreement
with the numerically calculated results over a wide range of values of é. In par-
ticular, our numerical and asymptotic calculations show that, even in the absence
of surface-tension effects, the corner predicted by Moffatt’s leading-order outer
solution never actually occurs. In practice the higher-order terms obtained in
the present work dominate the formally lower-order term that can be obtained
straightforwardly without a detailed knowledge of the solution in the inner re-
gion, and so these higher-order terms must be included in order to obtain accurate
corrections to Moffatt’s leading-order value of the critical weight. In particular,
in practice the critical weights in both coating and rimming flow always exceed

Moffatt’s value.



1 Introduction

This paper revisits the fascinating question posed by Moffatt [1] of determining the
critical weights of Newtonian fluid of uniform density p and kinematic viscosity v that
can be maintained per unit length in a steady, smoothly varying, two-dimensional film
on either the outside or the inside of a horizontal circular cylinder of radius a rotating
anti-clockwise at a constant angular speed w, as a result of a balance between viscous
and gravitational forces. As well as being an important fundamental theoretical question
concerning viscous flows with a free surface, it is also of relevance to a number of practical
situations including several industrial coating processes.

In flow on the outside of a cylinder (usually called “coating flow”) load shedding
occurs when the weight of fluid is increased above its critical value. In flow on the
inside of a cylinder (usually called “rimming flow”) all the fluid is contained within the
cylinder and so load shedding is, of course, impossible, and increasing the weight slightly
above its critical value has the rather less dramatic effect of causing the film thickness to
develop a region of rapid variation as the excess fluid accumulates in the lower part of the
cylinder. Experimental investigations of the interesting unsteady and three-dimensional
flows that can develop in both coating and rimming situations have been undertaken by,
for example, Balmer [2], Karweit & Corrsin [3], Balmer & Wang [4], Moffatt [1], Kovac
& Balmer [5], Joseph & Preziosi [6], Preziosi & Joseph [7], Melo [8], Melo & Douady [9],
Vallette, Edwards & Gollub [10], Thoroddsen & Mahadevan [11, 12}, Vallette, Jacobs &
Gollub [13], and Boote & Thomas [14].

In his pioneering paper Moffatt [1] gave the steady two-dimensional leading-order

solution for both coating and rimming flow in the asymptotic limit in which the aspect

§= <%)1/2 (1)

(where g denotes acceleration due to gravity) approaches zero, that is, in which the film

ratio of the film, defined by

is thin. Moffatt showed that this solution (in which both inertia and surface-tension



effects are neglected) has a critical non-dimensional weight per unit axial length of
4.44272 which occurs at a maximum non-dimensional azimuthal volume flux per unit
axial length of two thirds. This critical solution has the rather unusual property that
the free surface has a corner at § = 0 (where 6 is the azimuthal coordinate measured
anti-clockwise from the horizontal on the ascending side of the cylinder) near which the
non-dimensional thickness of the fluid film is given by 1 — |8|/v/6 + O(6?).! The critical
film thickness has a maximum value of unity at # = 0 and a minimum value of 0.5961 at
0 = w. Aspects of Moffatt’s analysis are contained in the earlier work by Van Rossum
[16] on the classical “drag out” problem. The corresponding leading-order solution for
thin-film flow of a viscoplastic material (modelled as a biviscosity fluid with a yield
stress) was recently obtained by Ross, Wilson & Duffy [17].

Moffatt’s analysis was extended by Duffy & Wilson [15] to include solutions that are
unbounded at # = £Zn (where the lubrication approximation therefore fails). These
“curtain” solutions are physically sensible only in coating flow, where they provide a
crude model for a curtain of fluid falling onto and off the cylinder; they can be regarded
as generalisations of the classical solution of Nusselt [18, 19] for curtain flow round a
stationary cylinder. Unlike Moffatt’s solution, curtain solutions are possible for all values
of the weight and so the question of a cri;cical weight does not arise in this case.

By considering the first-order correction in the aspect ratio § to Moffatt’s leading-
order solution Johnson [20] showed how in rimming flow (but not in coating flow),
Moffatt’s solution can be extended to include solutions with one or two regions of rapid
variation in thickness, both with and without dry patches (termed “partial-film” and
“jump” solutions respectively by Duffy & Wilson [15]) whose weight can exceed the
critical value for smooth solutions. By extending the analysis of Johnson [20], Duffy &

Wilson [15] showed that, in contrast to Moffatt’s solution, curtain solutions allow the

1 As Duffy & Wilson [15] pointed out, Moffatt gave a slightly inaccurate value of 4.428 (instead of
4.44272) for the numerical coefficient in his expression for the critical weight in his equation (25), and
an incorrect value of 0.866 (instead of v/6/4 ~ 0.612) for the coefficient of |f| in his expression for the

film thickness in the footnote on his page 658.



possibility of both partial-film and jump solutions in coating flow.

As we have already mentioned, in rimming flow when the weight slightly exceeds
its critical value of 4.44272 the film thickness develops a region of rapid variation in
the quadrant between § = —i7 and 6 = 0. As Johnson [20], O’Brien & Gath [21] and
Tirumkudulu & Acrivos [22] describe, the leading-order thin-film solution can be used
to model this behaviour as a “shock” solution that has a discontinuity in film thick-
ness and, in particular, to predict the location and height of the shock. This solution
predicts a region of backflow (absent in Moffatt’s solution) when the non-dimensional
weight exceeds 4.98229, but fails when it reaches 6.92607.? Tirumkudulu & Acrivos [22]
proposed an extension to Moffatt’s leading-order solution that selectively retains certain
first-order terms in & due to the hydrostatic pressure, and found excellent agreement
between their predictions for the film thickness and both numerical solutions of the full
Stokes equations and experimental results for several supercritical values of the weight.
Taking a slightly different approach Wilson & Williams [23] numerically solved an evolu-
tion equation for rimming flow that incorporates the smoothing effect of surface tension,
and they found that for the particular case they considered with a slightly supercritical
value of the weight, a steady solution eventually develops with a single region of rapid
variation whose location is in good agreement with the prediction of the leading-order
thin-film solution. Hosoi & Mahadevan [24] numerically solved an evolution equation for
rimming flow incorporating both weak surface-tension and weak inertia effects and ob-
tained both steady and unsteady two-dimensional solutions. They also calculated steady
three-dimensional flows resembling the “shark-teeth” pattern observed experimentally.
The linear stability of steady two-dimensional rimming flow has been investigated by
Johnson [25] and more recently by Hosoi & Mahadevan [24], who found that it is linearly
stable to axial perturbations when inertia effects are weak but linearly unstable when

inertia effects are sufficiently strong.

2Note that the corresponding critical values given by Tirumkudulu & Acrivos [22], namely 1.5862
and 2.2135, are slightly inaccurate and should be 1.5859 and 2.2046.



Complementing the above analytical work on thin-film flows are numerical studies of
situations when the film is not thin. Hansen & Kelmanson [26] used an integral-equation
method to compute steady coating-flow solutions to the full Stokes equations for several
values of § between 0.2 and 1. In particular, they found that for all the parameter
values they investigated the critical film is always thickest at § = 0 and thinnest at
6 = 7 (as it is in Moffatt’s solution) and that the numerically calculated critical weight
lies close to, but always somewhat above, Moffatt’s value, the difference diminishing
as ¢ is decreased. Interestingly, even for the smallest value of § they considered (6 =
0.2), their numerically calculated critical film thicknesses show no hint of the corner
at # = 0 present in Moffatt’s leading-order solution; as we shall show subsequently
this observation is consistent with our own numerical and asymptotic results. Most of
Hansen & Kelmanson’s [26] numerical calculations are (like Moffatt’s solution) for the
case of zero surface tension, but they also undertook some calculations including surface
tension and concluded that significant variations from their earlier results occur only
for unphysically large values of the surface tension. More recently, Peterson, Jimack &
Kelmanson [27] used a mixed finite-element method applied on a continuously deforming
grid to compute unsteady coating-flow solutions to the full Stokes equations for a range
of values of 6. The results of these calculations broadly confirm the values of critical
weight obtained by earlier authors and show, rather unexpectedly, that steady states
are more readily attained for near-critical weights. Their calculations for supercritical
values of the weight show dramatic evidence of load shedding.

Kelmanson [28] proposed an extension to Moffatt’s leading-order solution that selec-
tively retains some, but not all, of the first-order terms in 4. In particular, for coating
flow this approach yields a positive correction to Moffatt’s leading-order value of the
critical weight that results in improved agreement with Hansen & Kelmanson’s [26] nu-
merical results. However, as the present work shows, if all of the first-order terms are
included then the true correction is in fact negative and so makes the agreement worse!

The numerical and asymptotic results in the present work show that in order to obtain



improved agreement it is necessary to include corrections that formally are of higher
order but which in practice dominate the first-order correction for all but unphysically
small values of .

The first experimental investigation of the critical conditions in both coating and
rimming flows was apparently undertaken by Preziosi & Joseph [7] who found good
agreement with a local “run-off” condition equivalent to the requirement that the volume
flux takes its maximum value in Moffatt’s leading-order solution despite the fact that
the films were not two-dimensional but had significant variations in the axial direction.
Subsequently, Kelmanson [28] reported measurements of the critical weight from a simple
coating-flow experiment for several values of § between approximately 0.06 and 0.23
which are in reasonable agreement with his approximate theory. Kelmanson [28] did not
show a comparison with Moffatt’s leading-order value for the critical weight; we shall
‘show subsequently that Kelmanson’s [28] experimental values of the critical weight lie
reasonably close to, but definitely below, Moffatt’s value.

In the present paper we use a combination of analytical and numerical techniques
to re-examine the question posed by Moffatt of determining the critical weights of fluid
that can be maintained per unit length in a steady, smoothly varying, two-dimensional
film in either coating or rimming flow on a rotating horizontal cylinder. In §2 the ap-
propriate mathematical problem is formulated. In §3 we use a pseudospectral method
to obtain highly accurate numerical solutions for steady Stokes flow and hence to cal-
culate the critical weights. In particular, these numerical calculations reveal that the
behaviour of the critical solutions in the thin-film limit § — 0 in an inner region near
6 = 0 (where Moffatt’s leading-order outer solution has a corner) are not captured by
naive outer asymptotic solutions in integer powers of §. Motivated by these numerical
results we obtain in §4 the uniformly valid critical asymptotic solutions in the thin-film
limit to sufficient accuracy to enable us to calculate the critical fluxes and weights to
accuracies o(0%/3(log §) %) and 0(6*/3(log §)~2) relative to Moffatt’s leading-order values,

respectively. In §5 we compare our numerical and asymptotic results with each other



and with Hansen & Kelmanson’s [26] numerical results, Kelmanson’s [28] approximate

theory, and Kelmanson’s [28] experimental results. Finally in §6 conclusions are drawn.

2 Governing equations and boundary conditions

We consider the steady two-dimensional Stokes flow of a layer of Newtonian fluid of
uniform density p and viscosity p on either the exterior (“coating flow”) or the interior
(“rimming flow”) of a circular cylinder of radius a rotating about its horizontal axis at
uniform angular speed w (so that the circumferential speed is U = aw). The geometry
is shown in figure 1 in the case of coating flow; the corresponding geometry for rimming
flow can be readily deduced. We refer the description to polar coordinates r, § with
origin at the cylinder’s axis and with 6 measured anti-clockwise from the horizontal on
the ascending side of the cylinder. We denote the thickness of the layer by h(6) (so that
the free surface of the fluid is at » = a + h for coating flow and r = a — h for rimming
flow), the fluid velocity by u(r,0) = v(r,8)e, + u(r,0)eq, where e, and ey denote the
unit vectors in the radial and azimuthal directions respectively, and the fluid pressure
by p(r,8). The unit tangent in the direction of increasing 6 and the unit outward normal
to the free surface are denoted by t apd n respectively. The governing equations are
the familiar mass conservation and Stokes equations which are to be solved subject to
the usual boundary conditions of continuity of velocity at the cylinder together with
continuity of stress and the kinematic condition at the free surface. Surface-tension
effects are neglected. The conditions for the neglect of inertia and surface tension will
be made explicit subsequently.

Moffatt [1] obtained the leading-order solution to this problem in the limit in which

the aspect ratio of the layer, given by

1/2 1/2
uwlU vw
5= ==
(ﬂgaz) (ga) ’ ®

approaches zero, that is, in which the layer is thin. Since we wish to extend this solu-

tion to higher orders it is convenient to non-dimensionalise the problem using a as the
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azimuthal length scale, da as the radial length scale, U as the azimuthal velocity scale,
0U as the radial velocity scale, and dpga as the pressure scale. Hereafter all quantities
will be dimensionless unless stated otherwise.

For coating flow we write r = 1 + dy; then the governing equations become

ov dv 10u
T tre 0 ®)
0____2_5_1_5 Dzv—i—fg%—(%v —sind, (4)
0:—§%+D2u+gg—2—%—cosﬁ, (5)
where we have written ) )
D2:aa_yz+g%+f—2§—02—, (6)

the continuity of velocity condition at the cylinder becomes
u=1 wv=0 on y=0, (7)

and continuity of normal and tangential stress and the kinematic condition at the free

surface become

p = 2(ey cos2a + ey sin 2a), (8)
err Sin2a — e, cos2a = 0, (9)
dvcosa +usina =0 (10)
on y = h, where
e = 60U g 1|0 _du 0 (11)
Ty T 2loy T v T o8

are components of the rate-of-strain tensor, n = (cosa,sina), t = (—sine, cos a), and

the angle « (shown in figure 1) is given by

on'
1+4h

tana = —

(12)

(where a prime denotes d/d6). The flux @ of fluid per unit axial length crossing a station

f = constant in the direction of increasing 6 (made non-dimensional with éaU) is given

9



by
h
Q= /0 u dy, (13)
in terms of which the kinematic condition (10) can (at least for the steady continuous
solutions that we shall be concerned with in the present work) be replaced by the simpler

statement that ) is a constant. The weight W of fluid on the cylinder per unit axial

length (made non-dimensional with dpga?) is given by
2r
W= ["h+Jont do. (14)
0

For rimming flow we write r = 1 — dy; we then find that the relevant equations and
boundary conditions are identical to those obtained by replacing p with —p and § by —4

in those for coating flow given above.

3 Numerical procedure

3.1 Stream-function formulation

In order to solve the present problem numerically it is convenient to reformulate it in
terms of a stream function ¢ defined by u = 9y /0y and v = —r~19¢/00. With this

choice the continuity equation (3) is satisfied automatically, and (4) and (5) become

_ 0 00

0 = 3y rc')OD 1 —sin 6, (15)
. 60p 0 .,

0 = 50 + 6yD ) — cosb. (16)

Eliminating p between (15) and (16) shows that 1 satisfies the biharmonic equation
D*y) = 0. (17)
The continuity of velocity condition (7) can be written as

¥ =0 and ?9_1:5:1 on y =0, (18)

10



and the kinematic condition (10) as

=@ on y=h. (19)

We can eliminate p from the normal-stress boundary condition (8) by differentiating

along the free surface. Specifically, since

0 0 Osina 0 0 . 0 dcosa O
— =cosa— + o = —Sslnag— + —

on Oy r 09’ ot oy r 06’

where n and ¢ denote coordinates in the directions of n and t respectively, from (15)
and (16) we have
op 0

_ = 2 —
Y BnD ¥ — cos(0 + @),

and so (8) can be written as

[ 0 :
-— — — 2= (& 2 T = = .
8nD 1 —cos(f + ) 5 (e;r cos2a+ €9 sin2a) =0 on y=h (20)

We therefore solve the biharmonic equation (17) subject to the boundary conditions (9),
(18), (19) and (20) for ¢. The unknown value of the flux @ given by (13) is determined

by prescribing the weight W of fluid on the cylinder given by (14).

3.2 Transformation and pseudospectral discretisation

The numerical method employed in the present work involves replacing derivatives with
pseudospectral differences after the fluid domain 0 < y < A(#), 0 < € < 27 has been
transformed onto a rectangular domain in (7, ) space by writing y = H(¢)n and 6 =
f(€), where H(§) = h(f(£)) and f(0) =0, so that

o_19 o0 _1(0 Hnd
oy Hon' 00  fr\o¢ H dn)’

(21)

The strictly monotonically increasing function f(§) may be chosen so as to cluster the
numerical grid points in the @ direction. If this is not necessary then we simply use
the uniform grid obtained by setting f(£) = £. However, the numerical calculations

reveal that in the critical case there is a region of rapid variation on a length scale of

11



O(6%/3) near 6 = 0 (see §3.3 for further details of this region), and so in order to resolve
the critical solution over several grid points a non-trivial choice of f(£) is required.

Specifically, we choose f(£) so that

f'(¢€) =1- (1 —c)tanh(kcosé), (22)

where the parameters ¢ and £ are at our disposal. If we choose k to be sufficiently large
then (22) has d6/d¢ = f'(§) =~ c near § = 0 and so choosing ¢ to be sufficiently small
clusters the grid points near § = 0. Since the width of the region of rapid variation is
O(6%/3) we choose ¢ = 6*/3 < 1, and after numerical experimentation it was found that
choosing k = — log /3 ensures that it contains sufficient grid points.

A numerical grid of size m x n is placed on the rectangular domain in (7, £) space
using the Chebyshev-Gauss-Lobatto points in the 7 direction scaled onto 0 < 5 <
1, and uniform spacing in the ¢ direction. All derivatives are then approximated to
spectral accuracy using Chebyshev and Fourier collocation differentiation matrices to
give a system of nonlinear algebraic equations. There are N = n(m + 2) unknowns,
consisting of ¢;;, ¢ = 0,1,...,m, 3 = 1,2,...,n, and H;, j = 1,2,...,n, where 9;;
denotes the approximation to % at the grid point (7, &;) and H; the approximation to H
at &;. The discretised form of (17) is applied at points i = 2,3,...,m—2, 1 =1,2,...,n,
(18) is applied at ¢ = 0, 7 = 1,2,...,n, and (9) and (20) at i =m, j = 1,2,...,n to

give n(m + 1) equations. The flux @ in (19) is unknown and hence we use

wmj:¢mj+1> j:1727"'7n_1)

giving a further n — 1 equations. The final equation is given by (14) for a specified
weight W. For periodic functions integrated over a full period the trapezoidal rule has
spectral accuracy, and so this is used to approximate (14). The system of N equations,
of the form F(U) = 0, where F and U are vectors of length N, with U containing the
unknowns, is solved by Newton’s method, in which the elements of the Jacobian matrix

J are calculated numerically using

oF; 1

i =50, = oA

[F(Uy,..., U+ A,...,Uy) = F(U,,...,U; = A,...,Un)],

12



where A < 1 is set to 1076,

The accuracy of the calculations can be ascertained by varying m and n separately
and comparing the results. As expected, the results exhibit pseudospectral accuracy,
and for a typical calculation having n = 80 and m = 8 they are accurate to at least 10
decimal places.

Hansen & Kelmanson [26] proved that, in the absence of surface tension, any steady,
smoothly varying, two-dimensional solution is necessarily symmetric about the horizon-
tal diameter § = 0, . Having verified this property with our preliminary numerical
calculations we subsequently solved the problem only on 0 < § < 7. As we have already
seen, such a symmetric solution is possible only if the weight of fluid does not exceed a
critical value, which we denote by W.. We can determine W, from the present numerical
calculation by exploiting the fact that for W < W, the Newton iteration converges, but
for W > W, it does not. A robust way of calculating W, is to use a bisection method,
in which the interval (Weony, Waiv), where Weoy and Wy, are the current values of the
largest converged and smallest diverged values of W, is continually halved. Rigorous
numerical testing showed that the resulting values of W, are accurate to at least 10

decimal places.

3.3 Numerical results

Figure 2(a) shows numerically calculated solutions for A for both coating and rimming
flow in the case :5 = 0.1 plotted as functions of §/7 for a range of values of W up
to and including the respective critical values. For comparison figure 2(a) also shows
Moffatt’s leading-order critical solution in the limit 6 — 0. Figure 2(b) shows the
detail near 6 = 0 of numerically calculated critical solutions for h for both coating and
rimming flow plotted as functions of 8 for a range of values of § and clearly illustrates the
appearance of a region near § = 0 in which A" becomes large in the limit § — 0. Careful
measurements of the curves in Figure 2(b) suggested that this region is of width O(6%/3)

and that within it A = 14+ O(6%3). This was confirmed both by plotting (h—1)6~2/3 as

13



a function of #6~%/% near # = 0 for a range of (small) values of § and verifying that the
curves were essentially independent of §, and by the asymptotic analysis described in §4.
In particular, this means that h = O(1), b’ = O(1) and A" = O(672/3) near § = 0. Note,
however, this does not mean that the curvature of the free surface x becomes large in the
limit § — 0. On the contrary, in general K ~ 1—3§(h+h") and so near § = 0 the curvature
of the free surface is given by x = 1 + O(6'/3) and hence takes the finite value of unity
(equal to the curvature of the cylinder) at leading order in §. Thus (in agreement with
Hansen & Kelmanson’s [26] numerical results) even in the absence of surface-tension
effects, the corner predicted by Moffatt’s leading-order solution never actually occurs.
These statements are confirmed by Figure 3(a) which shows the numerically calculated
shape of the critical free surface in coating flow for a range of values of §, and by figures

3(b) and 3(c) which show the region near # = 0 magnified 5 and 25 times respectively.

4 Asymptotic solution in the limit § — 0

In this section we obtain higher-order corrections to Moffatt’s [1] leading-order critical
solution, and in particular to his value for the critical weight, in the thin-film limit
0 — 0. For brevity, we give the details of this calculation only for coating flow and then
indicate how the corresponding results for rimming flow can be deduced. As we have
already seen, 0'/3 rather than simply ¢ is the appropriate expansion parameter in this

limit, and so we write € = 6*/3 and pose the asymptotic expansions

ho) =Y GH6), u(w.0)=Y. ¢Ui(y,0),
o e (23)
v(y,0) = E eVi(y,0), p(y,0)= Z e Pi(y,0)

as ¢ — 0; correspondingly we find that
Q=) €Q: (24)
i=0

Our prime aim is to determine the critical weight W, over all allowed values of the flux

Q; we shall do this to order €* and so, for the sake of brevity, in what follows we shall

14



retain only those terms needed to calculate W, to this order.

Substituting (23) and (24) into (3)—(10) we find at leading order that

Ugp + Voy =0, FPoy = —sinf, Uy, = cosb, (25)
Uy=1, V=0 on y=0, (26)
PO - O, on =0 on Yy = Ho(g) (27)

Thus we recover Moffatt’s family of solutions
Uy=1+ (%y2 - yHO) cosf, Qo= Hy— $HEcosb, (28)
Vo = (%y3 —*%Hoyz) sinf + $Hjy*cos, Py = (Hp— y)sin®,
parameterized by (o, where a prime again denotes d/df. As Moffatt showed, this solu-

tion gives a continuous film encircling the cylinder only if 0 < @ < %; the appropriate

branch of the solution Hy in (28) may be written in the explicit form

[ _2 cos (2_7r 1 cos ™ K(G)) if cosf >0
Vcos 6 3 3 ’

Ho(0) = Qo if cos 6 = 0, (29)
st ginh (1 sinh ™! K(H)) if cos§ < 0,
| /I cosf| 3

where
K(0) = — 2 sgn(cosd) Qoy/| cos b (30)
(O’Brien & Gath [21], Duffy & Wilson [15]). The leading-order film thickness Hy has

top-to-bottom symmetry, is thickest at § = 0, thinnest at # = 7, and takes the value @,
at 6 = x1m. The weight of fluid on the cylinder is given by W = W, + O(e), where

2T
Wo= [ Ho do. (31)

Numerical evaluation of (31) reveals that W, increases monotonically (indeed almost
linearly) with @, so that the value of @y that corresponds to the critical value of
Wy is Qo = Qoc = %, and with this value the critical weight of fluid is found to be
W, = Wyc + O(e), where

W, =~ 4.44272. (32)

15



When W < W, (and hence Q < @) higher-order corrections to Moffatt’s leading-
order solution can be calculated straightforwardly as a uniformly valid regular pertur-
bation expansion in powers of ¢ as described by, for example, Johnson [20] and Hosoi
& Mahadevan [24]. However, as Moffatt described, when Qo = Qo = % (but not oth-
erwise) the film thickness (29) has a discontinuity in slope (that is, a corner) at § = 0,
specifically

16|

Hy=1- 76 +0(#* as |9 —o0. (33)

This behaviour of the leading-order solution suggests that in the critical case (but not
otherwise) there is an “inner” region near § = 0 in which a more careful analysis is
required. As we have already seen our numerical calculations strongly suggest (and the
present asymptotic analysis will confirm) that such a region is indeed present and has
width of O(e?). We therefore regard (23) as outer expansions (valid away from 6 = 0)

and pose the inner expansions

MO =Y Eh6), uwh) =Y. culy,e),
=R = (34)
’U(y, 0) = E_: elvi(:% ¢)7 p(y7 0) = Z: 61p’i(ya ¢)

near 6 = 0, in terms of the suitably scaled inner variable ¢ = 6/¢>. Note that since Q is
independent of 8, equation (24) still holds in the inner region.

When Q¢ = Qoc = % the leading-order inner problem is

uop =0, poy =0, ugy =1, (35)
=1 on y=0, (36)
po =0, Ugy = 0 on y= h0(¢)a (37)

yielding the leading-order inner solution
ho=1, uw=1—y+21y* py=0. (38)
With (38) used to simplify expressions the order-e inner problem is

U1p = 0, D1y = O, Uiyy = O, (39)

16



up=0 on y=0,

p1=0, uyy=-hy on y=1,

leading to

hy = constant, u; =-hiy, p1=0, Q;=0.

Since ()1 = 0 the order-e¢ outer problem is found to have the trivial solution

and so (42) collapses to

h1:O, U1=0, p1=0, Q1:0

(40)

(41)

(42)

(43)

(44)

Note that the inner solutions (38) and (44) are simply the appropriate outer solutions

(28) and (43) evaluated at 8 = 0.

The order-€? inner problem is

Voy +U2¢ =0, pay = —0, gy, =0,
99=0, up=0 on y=0,
p2 =0, uyy =—hy on y=1,
leading to
vo = shagy®, us=—hyy, p2=(1-9y)b, Qy=0.

Since 2 = 0 the order-e? outer problem is found to have the trivial solution

The order-¢3 inner problem gives

Pay = hag,  uzy, =2(1—y),
ug3 =0 on y=0,

ps =2hayg, ugy=3—hg on y=1,
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(45)
(46)

(47)

(49)

(50)
(51)

(52)



leading to

ug = —(3 + h3)y + v =143, ps=(y+1)hay, Q3=0.

The order-e3 outer problem is

P, = Hjcosf — (Hy — y)sin, Usy =2(Hy — y)cosf + Hjsind,
Us=0 on y=0,
P3 = (H3 — Hg) sin 6 + 2H0H(I) COSQ,
on y= HO)
Usy =1 — L(H3 + 2H3) cos,
leading to
Us =y — Hy(Hoy — 3v?) sinf — [(Hg — H?)y — Hyy? + %y?’] cos b,
Py =— (Hg + HP + Hoy — %y2) sin 0 + (Ho + y)H{ cos ¥,
Hy = —LHZ - HP,
use having been made of the fact that Qs = 0.

The order-¢* inner problem gives

U4yy = —"21'¢2 + (1 + 2y)h2¢¢,
us =0 on y=0,

Usgy = —-h4 — %h2¢¢ on y= 1,

so that

#

ug = 382y — y?) + hoge(3Y® + 332 — 3y) — hay
and
Qs = —hags — h3 + 507
The order-¢* outer problem gives
Usyy = 0,
U,=0 on y=0,

Uy = —Hycosf on y= Hy,
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(53)

(57)

(58)
(59)

(60)

(61)

(62)

(63)
(64)

(65)



leading to
Q4

Uy = —Hyycos, H,= Tgcosﬁ' (66)
Summarizing thus far, we have derived the expansion
Q=3+€Q+0() (67)
for @ (with Q4 unknown as yet), the outer expansion
h = Hy(0) + € H3(0) + *Hy(6) + O(%) (68)

for h (where Hy, H3 and H, are given by (29), (57) and (66) respectively), and the inner
expansion

h=1+€hy() + O(€), (69)

for h, where ¢ = 0/€®> and hy is a solution of the second-order ordinary differential
equation

hags + hi — §6° + Qs =0, (70)
subject to the matching conditions

9 ~ _lél as |¢| = oo. (71)

V6

As we shall see shortly, higher-order terms in (69) are not needed for determining the
order-e*-accurate approximation to W,. Note that, whereas @, Q2 and Qs are de-
termined by solving the inner problems at the respective orders, ()4 is not so simply
determined, but rather plays a role like Qg in the leading-order problem (28) in that
there are different film thicknesses hy and Hy (with different weights) for different values
of 4, and the critical value of @4, denoted by Q4, is determined by maximising the
coefficient of € in the asymptotic expansion of W over all allowed values of Q.

The system (70) and (71) for h must be solved numerically for a given Q4. Differen-
tial equations of the type (70) with similar or identical boundary conditions have been

studied in other physical contexts, namely combustion theory and resonant oscillations
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of water waves; see, for example, the work of Holmes [30], Ockendon, Ockendon & John-
son [31], Byatt-Smith [32, 33], Amick & Toland [34] and the summary by Sachdev ([35],
§2.4). In particular, Holmes [30] proved rigorously that in the special case @4 = 0 the
system (70) and (71) has two solutions; subsequent numerical calculations by Ockendon
et al. [31] for the general case Q4 # 0 (confirmed by our own numerical studies) indicate
that there is a maximum value Q4 = Q} =~ 0.44410 such that the system (70) and (71)
has two solutions when @ < @}, one solution when @@ = @}, and no solution when
Q> Qi

In order to calculate and then maximise the weight it is first necessary to construct
an appropriate uniformly valid composite expansion for h. Since Hy, H3z and H, have

the asymptotic forms

6] 262 )
Hy=1- '761—;4-?4-0(93),
2
H; = -3 + O(6), > as |8] =0, (72)
_ V6Qy N Q4
YT 2190 T o6

+0(9),

a uniformly valid composite expansion for A is

heomp = Ho(0) + [ha() + ha(@)] € + [Hs(0) + ha(9) + ha(d)] €

+ [I:Li(a) + ha(8) + fa4(q~5)] et + O(e), (73)

where we have defined ¢ = /¢ and ¢ = (27 — 6)/€® together with

(@) = ha(e)+ T, (74)
ha(@) = hs(d)+3, (75)
@) = mai)- 2% (70

(which are finite for all ¢) and

H,(0) = Ha(6) - (77)

YT
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(which is finite for 0 < 6 < 27). From (14) the corresponding weight of fluid W is then
found to be
W = WOc + 63VV3C + €4W4(6a Q4) + 0(65)7 (78)

where Wy, (which depends only on the leading-order outer solution) is given by (32),

W, (which depends only on the outer solution) is given by

Wi = /0 " Hy - 1H2 do = — /0 " H? 40 ~ —0.17322, (79)
and
Wy = QWi + Wy, (80)
where X
Wio = 02" -gi d6 ~ —0.24000 (81)

(which depends only on the order-e* outer solution) and
2wfe?
Wai=2[" hdo (82)
0

(which depends only on the order-¢? inner solution).

‘Equation (70) was solved numerically for h, by using a standard second-order central-
finite-difference method in which the ensuing algebraic equations were solved using New-
ton’s method. Since we are specifically interested in the behaviour of Wy in the limit
e — 0 in which the upper limit in (82) becomes large, the variable of integration in
(82) was first transformed from ¢ to ® by writing ¢ = sinh(®) and then the integration
range was discretised uniformly in ®. The corresponding value of W, was calculated by
evaluating (82) numerically using the trapezoidal rule. By choosing a sufficiently fine
grid we ensured that the results obtained are accurate to at least 6 decimal places.

Figure 4 shows numerically calculated solutions for A, plotted as functions of ¢ for
a range of values of @, < @} in the case ¢ = 1072, For this particular value of ¢ the
value of Q4 that maximises Wy is found to be Q4 = Q4. ~ 0.43733; figure 4 also includes
the corresponding solution for hy in this case and the single solution for &, in the case

Qs = Q =~ 0.44410.
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Figure 5 shows the corresponding numerically calculated values of Wy plotted as
functions of Q4 for a range of values of €. In each case the location of the critical value
of Wy = Wy(e) at Q4 = Quc(€) is marked with a filled circle. In particular, figure 5
shows that W, = 4.38788 at Q4 = 0 on the upper branch and Wy =~ —0.88910 at Q4 = 0
on the lower branch for these values of ¢, and that Wy, = O(loge) and Q4 — @} in
the limit e — 0.

Our numerical solutions of (70) and (71) for hy indicate that as @4 — @}~ on the

upper branch

ha = hap(9) + (@ — Qu)Tha1(9) + (@} — Qu)has(d) + 0(Q} — Qu), (83)

where hog is the (unique) solution for h, when Q4 = Q. Substituting (83) into (70)

and the far-field condition

¢, 3Q | 997 | 3Qq (i
\/6+ N + + +0 pe

ho =
’ 21647 ¢
we find that hy; satisfies

) as ¢ — oo, (84)

ha14¢ + 2ho0hoy =0 (85)

subject to

hay = O (gb—% exp [— @)“ ¢3D as ¢ — oo, (86)

and that hg, satisfies
haogs + 2haphay =1 — h%,l (87)
subject to
M 1
’ 26 V6 ¢ #°
Substituting (83) into (80) yields

) as ¢ — oo. (88)

Wy = QiWio + Io + 1 (Qf — Qu)% + (I — Wao) (@5 — Qu) +0(Q5 — Qu),  (89)

where
Iy = 27r/Ezh + ¢ d
— 2/ — ,
0 o 2,0 \/6 ¢ (90)
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27 /€2

L = 2/0 ha,1 do, (91)
21 /€2

L = 2 /0 hys do. (92)

From (84), (86) and (88) we can deduce that

Iy, = —2V6Q}loge + Ag+ O(e%), (93)
Il = A1 + 0(1), (94)
12 = 2\/610g €+ A2 + 0(64) (95)

as € — 0, where Ay, A; and A, are constants. Determining Q4. by solving dW,/dQ4 = 0
in (89) for Q4 yields

241
26 loge + A,

2
Q=i ) +otioga” (96)

and

(34,)°
2\/610g€ + A2 - W40

Wi, = —2v6Q} log e + Qi Wiy, + Ay — +o(loge)~? (97)

2
as € = 0. Our numerical solutions for hy yield Q3 Wy, + Ao =~ 3.17807, (%Al) =~ 4.56356
and A, — Wy, =~ —3.55719. Hence the main theoretical results of the present work,
namely the asymptotic solutions for @), and W, in the limit ¢ — 0, are given by

Qc = Qoc + €' Quc + o[ (log e) %), (98)

3

where Qo. = 2 and Q4 is given by (96), and
Wc == WOc + €3W3C + 64W4c + 0(64(10g 6)_2)7 (99)

where Wo., Ws. and W), are given by (32), (79) and (97), respectively.

Note that while Wy, and W3, can be determined without a detailed knowledge of the
solution in the inner region, the higher-order terms cannot. In particular, Wy, can be
obtained only by calculating the leading-order solution in the inner region as we have

done here. As we shall see in the next section, in practice the ¢*W,, term dominates
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the formally lower-order e3Ws, term and so it must be included in order to obtain an
accurate correction to Wy,.

The above results are for coating flow. The corresponding results for rimming flow
are obtained by replacing p with —p and e with —e (and so § with —§) everywhere except
(since Wy, is insensitive to replacing e with —e) in loge.

One of the features of the present analysis is that it entirely neglects the effects of
both inertia and surface tension. It is therefore important to determine under what
conditions these assumptions are valid. From Hosoi & Mahadevan’s [24] equation (2.19)
we can deduce that inertia and surface-tension effects will not appear in the O(e?) inner

problem provided that

w  _, (v ~13
o v\
S K= (—) : (101)
pga ga

respectively, where o denotes the coefficient of surface tension. In the experiments
described by Moffatt in which 4 = 80 g cm™ s7!, ¢ = 2.04 cm and p ~ 1 g cm™3
both (100) and (101) are well satisfied. Specifically (100) holds provided that w < 196
rpm compared to a largest reported value of w = 77.4 rpm, while with w = 8 rpm (the
smallest reported value of w) (101) holds provided that ¢ < 241 dyn cm™. Moffatt
does not give a value for o, but the experimental data given by Balmer & Wang [4]
suggests it would almost certainly be below 100 dyn cm~!. In the experiments described
by Kelmanson [28] using a smaller cylinder and less viscous fluids (100) is again well
satisfied, but (101) is at best only marginally satisfied, indicating that surface-tension

effects may play a significant role near # = 0 in these experiments.
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5 Comparison between numerical, asymptotic and
experimental results

Figure 6 shows the excellent agreement between Wy, given by (97) and the numerically
calculated values of (W, — Wy, — €2Ws.)/e* for both coating and rimming flow. The
figure also shows —2\/6622 loge + QiWyo + Ag & —2.175621log e + 3.17807, from which
the significant contribution of the final term in (97) can be ascertained.

Figure 7 shows the excellent agreement between the leading-order asymptotic and
numerically calculated critical values of h— Hy—e3Hs when Q = Q. in the case e = 1073/2
for both coating and rimming flow. Away from 6§ = 0 and # = 27 the leading-order
asymptotic solution for this quantity is the sum of the three O(e?) terms €2hy(¢), €2ha ()
and €*H,4(0), and hence in figure 7(a) (h — Hy — ¢* H3)/€* is plotted as a function of 8/27
from 0 to 1. Figure 7(a) also shows the individual contributions of the terms e2hs(¢),
2hy($) and €*H,(6) separately. Near § = 0 the leading-order asymptotic solution is
given by just the O(e2) term e2hy(¢), and hence in figure 7(b) (h — Hy — €3 H;)/€? is
plotted as a function of ¢.

Note that in figures 6 and 7 the coating and rimming results straddle the asymptotic
solution, as expected.

Figures 8 and 9 show the comparison between the order-e*-accurate asymptotic so-
lution for W, given by (99) and the numerically calculated values of W, for coating flow
and (in figure 9) rimming flow. For consistency with earlier authors the results in figures

8 and 9 are plotted as functions of the Stokes number v = §72 = €75,

Figure 8 also
shows Hansen & Kelmanson’s [26] numerical results, both the full (implicit) and the
simplified (explicit) versions of Kelmanson’s [28] approximate theory, and Kelmanson’s
[28] experimental results. The error bars on Hansen & Kelmanson’s [26] numerical re-
sults are taken from figure 2 of their paper. The upper and lower ends of these error

bars indicate the smallest value of W for which their numerical calculations did not

converge within 200 seconds of CPU time and the largest value of W for which they
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did, respectively, and the dots simply denote the mid-points between the two extreme
values. Kelmanson [28] does not give any indication of the errors in his experimental
results. Figure 9 shows results for both coating and rimming flow for larger values of
(i.e. for smaller values of 6).

Figures 8 and 9 show that the asymptotic and numerically calculated solutions are
in good agreement for values of 7y greater than about 10, i.e. for values of § less than
about 0.3. Figure 8(a) shows that all the results are in rough agreement over the
range of values of v shown. Figure 8(b) clearly shows that while our asymptotic and
numerical solutions together with Hansen & Kelmanson’s [26] numerically calculated
results all lie above Wy, Kelmanson’s [28] experimental results lie below it. Figure
8(b) also shows that while Kelmanson’s [28] approximate solutions are indeed closer to
Hansen & Kelmanson’s [26] numerical results and Kelmanson’s [28] experimental results
than W), none are in particularly good agreement with either our asymptotic or our
numerically calculated solutions. In particular, in the limit € — 0 both the full (implicit)

and the simplified (explicit) versions of Kelmanson’s [28] theory yield

2 1 4 5
Q. = g + 563 + 0(66), W, = ?ﬂ— + ‘9263 + 0(66)7 (102)

which differ from the corresponding exact asymptotic solutions given by (98) and (99)
at first and leading order in €3 respectively, explaining why neither of Kelmanson’s (28]
approximate solutions converge to Wy, for larger values of 7y in Fig. 8(b).

Figure 9 demonstrates that while W, > W), for all values of +y in rimming flow, in
coating flow even though W3, < 0, W, falls below Wj, only when « is larger than about
1.64 x 10', i.e. only when § is smaller than about 2.47 x 107%. This very large value
of v (and hence very small value of §) means that the O(5%/®log§) term dominates the
formally lower-order O(d) term for all but extremely slow rotation rates. In particular, for
the experiments described by Moffatt this will occur whenever the rotation rate is faster
than approximately one rotation every 1300 years! Thus in practice the higher-order

terms must be included in order to obtain an accurate correction to Wy,.
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For vy > 10'? the numerically calculated values of (W, — W) /e® begin to lose signif-
icance, and so in order to demonstrate conclusively that they do indeed approach W3,
for coating flow and —Wj, for rimming flow in the limit € — 0, figure 9 also includes the

numerically calculated values of

1 coat rim
AW, = o5 (W — W), (103)

where the superscripts “coat” and “rim” denote values for coating and rimming flow

respectively, confirming that AW, — Wjs,, as expected.

6 Conclusions

In the present paper we used a combination of analytical and numerical techniques to
re-examine the question posed by Moffatt [1] of determining the critical weights of fluid
that can be maintained per unit length in a steady, smoothly varying, two-dimensional
film in either coating or rimming flow on a rotating horizontal cylinder. We used a
pseudospectral method to obtain highly accurate numerical solutions for steady Stokes
flow on a cylinder and hence to calculate the critical weights. In particular, these
numerical calculations revealed that the behaviour of the critical solutions in the thin-
film limit § — 0 in an inner region near § = 0 (where Moffatt’s leading-order outer
solution has a corner) are not captured by naive outer asymptotic solutions in integer
powers of §. Motivated by these numerical results we obtained the uniformly valid critical
asymptotic solutions in the thin-film limit to sufficient accuracy to enable us to calculate
the critical fluxes and weights to accuracies o(6*/3(log §)~%) and o(6*/3(log §)2) relative
to Moffatt’s leading-order values, respectively. We found that our asymptotic solutions
for the critical weights are in good agreement with the numerically calculated results over
a wide range of values of §. In particular, our numerical and asymptotic calculations
showed that, even in the absence of surface-tension effects, the corner predicted by
Moffatt’s leading-order outer solution never actually occurs. In practice the higher-order

terms obtained in the present work dominate the formally lower-order term that can be
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obtained straightforwardly without a detailed knowledge of the solution in the inner
region, and so these higher-order terms must be included in order to obtain accurate
corrections to Wy.. In particular, in practice the critical weights in both coating and
rimming flow always exceed Wy.. We did not find particularly good agreement between
the present asymptotic and numerically calculated solutions (which lie above Moffatt’s
value for the relevant values of ) and Kelmanson’s [28] experimental results (which lie
below it). We should, however, bear in mind that this is not an easy experiment to
perform accurately and the difference from Moffatt’s value is small in absolute terms.
Moreover, as we have already seen, surface-tension effects may play a significant role in
these experiments. There is evidently a need for further experimental measurements of

the critical weight.
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Figure Captions

Figure 1 : Geometry of the coating flow problem.

Figure 2 : (a) Numerically calculated solutions for h for both coating flow (solid lines)
and rimming flow (dashed lines) in the case 6 = 0.1 plotted as functions of /7 for
W =1,2,3,4 and W,, where W, = 4.69428 for coating flow and W, ~ 4.73018 for
rimming flow. The dotted curve shows Moﬁatt’s [1] leading-order critical solution for h
in the limit 6 — 0 for which W, ~ 4.44272. (b) Detail near § = 0 of the numerically
calculated critical solutions for A for both coating flow (solid lines) and rimming flow

(dashed lines) plotted as functions of 8 for 6 = 0 and 6 = 107%/4 for k = 16,17, ...,22.

Figure 3 : Numerically calculated shape of the critical free surface in coating flow for
§ =107%/4 for k = 0,1,2,.... Parts (b) and (c) show the region near # = 0 magnified 5

and 25 times respectively.

Figure 4 : Numerically calculated solutions for &, plotted as functions of ¢ for a range of
values of Q4 < @} in the case ¢ = 1072, For each value of Q4 < @} the larger solution is
marked with a solid line and the smaller one with a dashed line. The figure also includes
the larger solution for ﬁz in the case Q4 = Q4 =~ 0.43733 (which maximises W; for this

particular value of €) and the single solution for hs in the case Q; = 1 ~ 0.44410.

Figure 5 : Numerically calculated values of W, plotted as functions of Q4 for e = 1071,
1072 and 1073. In each case the location of the critical value of Wy = Wy.(e) at Q4 =
Q4c(€) is marked with a filled circle (o). The vertical dashed line indicates the value
Q. = @} =~ 0.44410 beyond which the system (70) and (71) has no solutions, and the
sloping dashed curves (which are almost straight lines) show the centre-lines between

the upper and lower branches of solutions.
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Figure 6 : Wy, given by (97) (solid curve) and the numerically calculated values of
(W, — Wo. — €¢Ws.)/e* plotted as functions of § = € for both coating flow (marked
with filled circles o) and rimming flow (marked with open circles o). The dashed curve

denotes —2.17562 loge + 3.17807.

Figure 7 : Leading-order asymptotic and numerically calculated critical values of (a)
(h — Hy — €2H3)/e* plotted as functions of 8/27 and (b) (h — Hy — €3Hj)/€? plotted as
functions of ¢ when @ = @, in the case ¢ = 10732 for both coating flow (marked with
filled circles o) and rimming flow (marked with open circles o). In (a) the dashed lines

denote the individual contributions of the terms €2h,(¢), €2hy(¢) and e*Hy(6).

Figure 8 : (a) W, and (b) (W.—Wq.)/€® calculated using the order-e*-accurate asymptotic
solution for W, given by (99) (dashed curve) and the numerically calculated values of
W, (solid curve) for coating flow plotted as functions of v = §=% = 5. The figure also
shows Hansen & Kelmanson’s [26] numerical results (denoted by filled circles with error
bars), Kelmanson’s [28] approximate theory (denoted by dash-dotted curves; the upper
and lower curves denote the simplified and the full versions of the theory respectively)
and Kelmanson’s [28] experimental results (filled squares denote results for SAE 30 oil,

open squares “Gold X” oil, and stars SAE 50 oil).

Figure 9 : (W, — Wy.)/€® calculated using the order-e*-accurate asymptotic solution
for W, given by (99) (dashed curve) and the numerically calculated values of W, (solid
curve) for both coating and rimming flow plotted as functions of v = §=2 = ¢5. The

dash-dotted line denotes the numerically calculated values of AW, given by (103).
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