Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Macroscale balance relations for bulk interfacial and common line systems in multiphase flows through porous media on the basis of molecular considerations

Murdoch, A.I. and Hassanizadeh, S.M. (2002) Macroscale balance relations for bulk interfacial and common line systems in multiphase flows through porous media on the basis of molecular considerations. International Journal of Multiphase Flow, 28 (7). pp. 1091-1123. ISSN 0301-9322

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new molecular-based approach is employed to derive balance relations for multiphase flow through porous media. Criteria are prescribed which identify, instant by instant, precisely which molecules are considered to reside in each bulk, interfacial, and contact line phase. Continuum balance relations for mass, momentum and energy are established for each of these phases (which consist of ever-changing molecular populations) at the scale of representative elementary volumes (REVs). All fields in these balance relations are related to space-time averages of molecular quantities, and complete account is taken of molecular transport within and between phases. This is a one-step procedure, as opposed to the two-step approach commonly used in averaging (first going from molecular scale to an intermediate scale, at which common lines, interfaces and pore geometry are manifest, and thence to a macro/REV-scale). In this way consideration of 'excess' quantities is avoided. Simplifications and constitutive considerations are discussed.