Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Speed training with body weight unloading improves walking energy cost and maximal speed in 75-85 year old healthy women

Thomas, E.E. and De Vito, G. and Macaluso, A. (2007) Speed training with body weight unloading improves walking energy cost and maximal speed in 75-85 year old healthy women. Journal of Applied Physiology, 103 (5). pp. 1598-1603. ISSN 0021-8987

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This randomized controlled study was designed to prove the hypothesis that a novel approach to high-speed interval training, based on walking on a treadmill with the use of body weight unloading (BWU), would have improved energy cost and speed of overground walking in healthy older women. Participants were randomly assigned to either the exercise group (n = 11, 79.6 ± 3.7 yr, mean ± SD) or the nonintervention control group (n = 11, 77.6 ± 2.3 yr). During the first 6 wk, the exercise group performed walking interval training on the treadmill with 40% BWU at the maximal walking speed corresponding to an intensity close to heart rate at ventilatory threshold (Tvent walking speed). Each session consisted of four sets of 5 min of walking (three 1-min periods at Tvent walking speed, with two 1-min intervals at comfortable walking speed in between each period at Tvent walking speed) with 1-min interval between each set. Speed was increased session by session until the end of week 6. BWU was then progressively reduced to 10% during the last 6 wk of intervention. After 12 wk, the walking energy cost per unit of distance at all self-selected overground walking speeds (slow, comfortable, and fast) was significantly reduced in the range from 18 to 21%. The exercise group showed a 13% increase in maximal walking speed and a 67% increase in mechanical power output at Tvent after the training program. The novel "overspeed" training approach has been demonstrated to be effective in improving energy cost and speed of overground walking in healthy older women.