Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Nonlinear excitations in electron-positron-ion plasmas in accretion disks of active galactic nuclei

Moslem, W.M. and Kourakis, I. and Shukla, P.K. and Schlickeiser, R. (2007) Nonlinear excitations in electron-positron-ion plasmas in accretion disks of active galactic nuclei. Physics of Plasmas, 14 (10). 102901 -102911. ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail.

Item type: Article
ID code: 20773
Notes: Correction to this article published: Physics of Plasmas (2008), 15 (1).
Keywords: nonlinear excitations, electron-positron-ion plasmas, galactic nuclei, physics, plasmas, Plasma physics. Ionized gases, Condensed Matter Physics
Subjects: Science > Physics > Plasma physics. Ionized gases
Department: Faculty of Science > Physics
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 09 Sep 2010 13:43
Last modified: 03 Jul 2014 16:09
URI: http://strathprints.strath.ac.uk/id/eprint/20773

Actions (login required)

View Item