Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Numerical solution of the flow of viscous sheets under gravity and the inverse windscreen sagging problem

Hunt, R. (2002) Numerical solution of the flow of viscous sheets under gravity and the inverse windscreen sagging problem. International Journal of Numerical Methods in Fluids, 38 (6). pp. 533-553. ISSN 0271-2091

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The slumping of a thin sheet of very viscous liquid glass is used in the manufacture of windscreens in the automotive industry. The governing equations for an asymptotically thin sheet with variable viscosity are derived in which the vertical coordinate forms the centre-line of the sheet. The time-dependant equations have been solved numerically using the backward Euler method to give results in both two and three dimensions. The flow of an initially flat sheet falls freely under gravity until it becomes curved and the flow becomes very slow in the slumped phase. Finally the sheet freefalls as the thickness becomes small at the boundaries. The inverse problem in which the viscosity profile is to be determined for a given shape can be solved as an embedding problem in which a search is made amongst the forward solutions. Possible shapes in the two-dimensional problem are very restrictive and are shown to be related to the sheet thickness. In three dimensions the range of shapes is much greater.