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Abstract

We use the lubrication approximation to investigate slender dry patches in an in-

finitely wide film of viscous fluid flowing steadily on an inclined plane that is either

heated or cooled relative to the surrounding atmosphere. Four non-isothermal situa-

tions in which thermocapillary effects play a significant role are considered.

Similarity solutions describing a thermocapillary-driven flow with a dry patch that

is widening or narrowing due to either gravitational or surface-tension effects on a

non-uniformly heated or cooled substrate are obtained, and we present examples of

these solutions when the substrate temperature gradient depends on the longitudinal

coordinate according to a general power law. When gravitational effects are strong the

solution contains a free parameter, and for each value of this parameter there is a unique

solution representing both a narrowing pendent dry patch and a widening sessile dry

patch, whose transverse profile has a monotonically increasing shape. When surface-

tension effects are strong the solution also contains a free parameter, and for each value

of this parameter there is both a unique solution representing a narrowing dry patch,

whose transverse profile has a monotonically increasing shape, and a one-parameter

family of solutions representing a widening dry patch, whose transverse profile has a

capillary ridge near the contact line and decays in an oscillatory manner far from it.

Similarity solutions are also obtained for both a gravity-driven and a constant-

surface-shear-stress-driven flow with a dry patch that is widening or narrowing due to

thermocapillarity on a uniformly heated or cooled substrate. The solutions in both

cases contain a free parameter, and for each value of this parameter there is a unique

solution representing both a narrowing dry patch on a heated substrate and a widening

dry patch on a cooled substrate, whose transverse profile has a monotonically increasing

shape.

1Tel 0141 548 3820, fax 0141 552 8657, email s.k.wilson@strath.ac.uk
2Tel 0141 548 3645, fax 0141 552 8657, email b.r.duffy@strath.ac.uk

1



1 Introduction

The formation, shape and stability of dry patches in thin fluid films flowing on solid sub-

strates is a much studied problem with numerous practical applications, including heat

exchangers, nuclear reactors, liquid-cooled turbine blades and falling-film evaporators. In

this paper we shall consider dry patches in an infinitely wide fluid film driven by gravity,

thermocapillarity or a constant surface shear stress flowing steadily on a heated or cooled

inclined plane when thermocapillary effects play a significant role.

The pioneering work on a dry patch in an isothermal infinitely wide film of viscous fluid

draining steadily under gravity down an inclined plane was performed by Hartley and Mur-

gatroyd [1], who proposed a condition for the critical maximum volume flux for a dry patch

to persist based on a balance between surface tension and inertia forces at the stagnation

point at its apex. Experiments (see, for example, the photographs of Ponter et al. [2] and

Podgorski, Flesselles and Limat [3]) reveal the presence of a distinctive “capillary ridge” near

the contact line which is absent from Hartley and Murgatroyd’s [1] theoretical analysis. This

analysis was extended by Murgatroyd [4] to include the effects of surface shear stress and

“form drag” due to the presence of a gas stream above the fluid film. Wilson [5] developed a

more sophisticated model for the flow which assumes that the cross-section of the capillary

ridge is a circular arc. Podgorski et al. [3] independently developed a model similar to that

of Wilson [5] based on a balance between surface-tension forces and the weight of the capil-

lary ridge, and found good agreement between their theoretical predictions and experimental

measurements. Recently, Wilson, Duffy and Davis [6] obtained similarity solutions describ-

ing a slender dry patch in a gravity-driven film for the cases of both strong gravitational

and strong surface-tension effects. When gravitational effects are strong the dry patch has a

parabolic shape and the transverse profile of the free surface has a monotonically increasing

shape, and when surface-tension effects are strong the dry patch has a quartic shape and the

transverse profile of the free surface has a capillary ridge near the contact line and decays in

an oscillatory manner far from it.

There has also been some work done on dry patches in non-isothermal films. Zuber and

Staub [7] extended Hartley and Murgatroyd’s [1] analysis to include both thermocapillarity

2



and vapour thrust. McPherson [8] further included the hydrostatic head and the form drag

introduced by Murgatroyd [4] but concluded that both effects are insignificant. Later Chung

and Bankoff [9] extended the approach of Zuber and Staub [7] to include the hydrostatic

head and a non-zero shear stress on the solid substrate.

In this paper we follow the approach of Wilson et al. [6] and use the lubrication approxi-

mation to investigate slender dry patches in an infinitely wide thin film of viscous fluid flowing

steadily on an inclined plane that is either heated or cooled relative to the surrounding at-

mosphere. Four non-isothermal situations in which thermocapillary effects play a significant

role are considered. Similarity solutions describing a thermocapillary-driven flow with a dry

patch that is widening or narrowing due to either gravitational or surface-tension effects on a

non-uniformly heated or cooled substrate are obtained. Similarity solutions are also obtained

for a gravity-driven and a constant-surface-shear-stress-driven flow with a dry patch that is

widening or narrowing due to thermocapillarity on a uniformly heated or cooled substrate.

In each situation one or more solutions corresponding to widening and/or narrowing dry

patches are obtained and analysed in detail. The present work is a companion to the paper

by Holland, Wilson and Duffy [10] who study the steady flow of slender rivulets on a heated

or cooled inclined plane in the four analogous situations.

2 Problem Formulation

We consider the steady flow of an infinitely wide thin film of viscous fluid around a symmetric

slender dry patch on a heated or cooled plane inclined at an angle α (0 ≤ α ≤ π) to the

horizontal, when there is an imposed constant shear stress on the free surface and the surface

tension of the fluid varies linearly with temperature. We consider both sessile dry patches

(when 0 ≤ α < π/2) and pendent dry patches (when π/2 < α ≤ π) as well as dry patches on

a vertical substrate (when α = π/2). Cartesian coordinates Oxyz with the x axis down the

line of greatest slope and the z axis normal to the substrate are adopted, with the substrate

at z = 0. The edges of the dry patch are at y = ±ye(x). The geometry of the problem is

shown in Figure 1.

Much of the formulation of the present problem follows that of Holland et al. [10] (also
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described by Holland [11]) and so only the most important details are reproduced here.

The differences between the rivulet problem and the present dry-patch problem occur in

the boundary conditions on the free surface z = h(x, y) and in the appropriate definition of

the volume flux Q. For both problems the surface tension γ = γ(T ) is assumed to depend

linearly on temperature T = T (x, y, z) according to

γ(T ) = γr − λ(T − Tr), (1)

where Tr is a reference temperature taken to be the temperature of the substrate at some

position x = x0, y = 0, γr is the surface tension when T = Tr, and λ = −dγ/dT is a positive

constant. Note that Tr may be greater than or less than the prescribed uniform temperature

of the passive atmosphere above the fluid, denoted by T∞, corresponding to the substrate

at x = x0, y = 0 being hotter or colder than the atmosphere respectively. The prescribed

average volume flux around the dry patch per unit width in the transverse (i.e. in the y)

direction is given by

Q = lim
y→∞

y−1

∫ y

ye

∫ h

0

u dz dỹ, (2)

where Q is a positive constant, and u = u(x, y, z) is the fluid velocity in the longitudinal (i.e.

in the x) direction. At the edges of the dry patch y = ±ye where h = 0 a condition must

be specified concerning the contact angle β = β(x, ye(x)). For example, β may be assumed

to satisfy a fixed-contact-angle condition, or to depend on the substrate temperature in

a prescribed way; however for our purposes it is not necessary to be specific about this

condition. Using the scalings adopted by Holland et al. [10] with Q = ǫδlU in place of their

definition of the longitudinal velocity scale U , where ǫ ≪ 1 and δ ≪ 1 are the longitudinal

and transverse aspect ratios respectively (i.e. the aspect ratios in the (x, z) and (y, z) planes,

respectively) and l is the longitudinal length scale, we obtain the same non-dimensional

governing partial differential equation for h (their equation (36)), namely


h3

3

{

S cos αh − 1

C
hyy +

δ2

ǫ2∆C

(
T0

1 + Bh
− 1

)
hyy

}

y

+
1

ǫ2∆C

h2

2

(
T0

1 + Bh

)

y





y

−
[
ǫS sin α

δ

h3

3
+ τ

h2

2
− 1

∆C

h2

2

(
T0

1 + Bh

)

x

]

x

= 0, (3)

together with the new non-dimensional flux condition (replacing their equation (37)), namely

1 = lim
y→∞

y−1

∫ y

ye

ǫS sin α

δ

h3

3
+ τ

h2

2
− 1

∆C

h2

2

(
T0

1 + Bh

)

x
dỹ. (4)
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Here T0 = T0(x, y) is the non-dimensional prescribed substrate temperature (which is, in

general, a non-constant function of x and y), τ is the non-dimensional imposed constant

shear stress on the free surface in the longitudinal (i.e. in the (x, z)) plane, and the four

non-dimensional parameters that arise are the Stokes number S, the capillary number C,

the thermocapillary number ∆C and the Biot number B, defined by

S =
ǫδ3ρgl2

µU
, C =

ǫµU

δ3γr

, ∆C =
µU

ǫδλ(Tr − T∞)
, B =

ǫδαthl

kth

, (5)

where ρ, µ and kth are the constant density, viscosity and thermal conductivity of the fluid

respectively, and αth is the surface heat-transfer coefficient. Hereafter all quantities will be

non-dimensional unless it is stated otherwise.

At the contact line y = ye(x) we have

h = 0, hy = β, (6)

and in the limit y → ∞ we have

lim
y→∞

h = h∞, (7)

where h∞ = h∞(x) is the thickness of the film far from the dry patch (which is, in general,

a non-constant function of x). With (7) the flux condition (4) simplifies to

1 =
ǫS sin α

δ

h3
∞

3
+ τ

h2
∞

2
− 1

∆C

h2
∞

2
lim
y→∞

y−1

∫ y

ye

(
T0

1 + Bh

)

x
dỹ. (8)

In the special case in which the substrate temperature is independent of y (i.e. when T0 =

T0(x)) the flux condition (8) simplifies further to

1 =
ǫS sin α

δ

h3
∞

3
+ τ

h2
∞

2
− 1

∆C

h2
∞

2

(
T0

1 + Bh∞

)

x

. (9)

Equations (3) and (8) are rather general equations for a slender dry patch in an infinitely

wide film subject to gravity, surface tension, thermocapillarity and a constant surface shear

stress. Particular forms of these equations have been studied previously for isothermal flow

by Wilson et al. [6] who considered a dry patch in a gravity-driven film for the cases of both

strong gravitational and strong surface-tension effects. In the case of strong gravitational

effects the two gravity terms in (3) (that is, the terms in S) are dominant with the gravity

term dominating the flux condition (9). In the case of strong surface-tension effects the
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dominant balance in (3) is between surface tension (represented by the term in 1/C) and

gravity (represented by the term in S sin α), with gravity again dominating the flux condition

(9).

Following the approach of Wilson et al. [6] we seek similarity solutions of (3) and (9) for

h of the form

h = bf(x)G(η), η =
y

ye(x)
, (10)

in which the constant b (included for convenience) and the functions f = f(x), ye = ye(x)

and G = G(η) are to be determined, where G satisfies the contact-line condition

G(1) = 0 (11)

and the far-field condition

lim
η→∞

G(η) = G∞, (12)

where G∞ is a constant satisfying h∞(x) = bf(x)G∞. Solutions of the form (10) cannot,

in general, satisfy a prescribed contact-angle condition of the type discussed earlier. The

isothermal dry-patch similarity solutions obtained by Wilson et al. [6] and the isothermal

rivulet similarity solutions obtained by Smith [12] and Duffy and Moffatt [13] have similar

shortcomings. Wilson et al. [6] showed how the isothermal rivulet solutions can be modified

locally near the contact line to accommodate a fixed-contact-angle condition by incorpo-

rating sufficiently strong slip at the solid/fluid interface into the model. Unfortunately this

procedure does not work for the isothermal dry-patch solutions and so is not attempted here.

Evidently we must have ye ≥ 0 and h ≥ 0 for the solution (10) to be physically relevant,

and without loss of generality we therefore take b, f and G∞ to be positive and ye and G to

be non-negative. In the sections that follow x0 (which may be infinite) is chosen such that

ye(x0) = 0, and solutions in both x ≤ x0 and x ≥ x0 will be considered.

6



3 Thermocapillary-driven flow with a dry patch widen-

ing or narrowing due to gravity

In this section we consider thermocapillary-driven flow with a dry patch that is widening or

narrowing due to gravity (i.e. the case in which the first and last terms dominate (3) and the

thermocapillary term dominates (9)). We consider a rather general non-uniform substrate

temperature distribution that depends on x but is independent of y, i.e. T0 = T0(x). For

later convenience we write T0 in the form

T0 = 1 −
∫ x

x0

θ(x̃) dx̃, (13)

satisfying T0(x0) = 1, T0,x = −θ and T0,y = 0, where θ = θ(x) is a prescribed function of x.

Setting S| cos α| = 1/|∆C| = 1 we find that ǫ, δ and U are given by

ǫ =

(
ρg| cos α|Qµl

λ2(Tr − T∞)2

) 1

2

≪ 1, δ =

(
λ|Tr − T∞|
ρg| cos α|l2

) 1

2

≪ 1, U =

(
λ|Tr − T∞|Q

µl

) 1

2

. (14)

The remaining terms in (3) and (9) are negligible provided that

1

C
≪ 1, B ≪ ǫ2, τ ≪ 1, | tan α| ≪ δ

ǫ
,

δ2

ǫ2
≪ 1, (15)

which, in particular, mean that surface tension, surface heat transfer and surface shear stress

must be sufficiently small, and that α ≪ 1 or π − α ≪ 1 (so that the substrate is horizontal

or nearly horizontal). In this case the governing equations (3) and (9) reduce to

(h3hy)y −
3σT σc

2
(h2θ)x = 0 (16)

and

1 =
σT θ

2
h2
∞

(17)

at leading order, where we have written

σT = sgn(Tr − T∞), σc = sgn(cos α), (18)

so that σT = ±1 correspond to the substrate at x = x0, y = 0 being hotter or colder than

the surrounding atmosphere respectively, and σc = ±1 correspond to a sessile or a pendent
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dry patch respectively. Note that (17) requires σT θ > 0; in particular, this means that θ

must be of one sign.

Seeking a solution of (16) and (17) in the form (10) we have

(G3G′)′ − 3σT σc

2b2
(C1G

2 − 2C2ηGG′) = 0 (19)

and

1 =
σT

2
C3(bG∞)2, (20)

where

C1 =
(θf 2)′y2

e

f 4
, C2 =

θyey
′

e

f 2
, C3 = θf 2 6= 0 (21)

are constants, and a prime denotes differentiation with respect to argument. Since C3 is

constant, we can deduce immediately that (θf 2)′ = 0, and hence that C1 = 0.

Equation (19) has the trivial solution G = G∞ which satisfies the far-field condition (12)

but not the contact-line condition (11). However, we can truncate this solution at |η| = 1 to

obtain the non-trivial solution

h =
∣∣∣∣
2

θ

∣∣∣∣

1

2

for |y| ≥ ye, (22)

where ye = ye(x) is an arbitrary function, representing a dry patch of arbitrary width in an

infinitely wide film whose transverse (but not, in general, longitudinal) profile is uniform.

In the general case C2 6= 0 the product of C2 and C3 in (21) leads to (y2
e )

′ = 2C2C3θ
−2.

If we define the function J = J(x) by

J =
∫ x

x0

θ(x̃)−2 dx̃, (23)

then provided that C2C3J ≥ 0 we have

ye = (2C2C3J)
1

2 . (24)

From C3 in (21) we find that

f =
(

C3

θ

) 1

2

. (25)

With the choice b = |3C2|1/2 equation (19) reduces to

(G3G′)′ + sηGG′ = 0, (26)
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where s = σT σcsgn(C2) = sgn (cos αy′

e), and the flux condition (20) becomes

1 =
3σT

2
|C2|C3G

2
∞

. (27)

In the special case C2 = 0 the solution is given by (22) with ye an arbitrary constant,

representing a parallel-sided dry patch of arbitrary width in an infinitely wide film whose

transverse (but not, in general, longitudinal) profile is uniform.

The exact solution of (26) that satisfies (11) and (12) has not been found; however,

considerable analytical progress can still be made and the equation can be solved numerically.

3.1 Behaviour as η → 1+

Seeking a local solution of (26) near the contact line η = 1 in the form G ∼ a(η− 1)r, where

a and r are real and positive constants, we find that the local behaviour of G as η → 1+ is

given either by

G = a(η − 1)
1

4 − s

3a
(η − 1)

3

4 + o(η − 1)
3

4 (28)

for s = ±1, where a > 0 is an arbitrary constant, or by

G = (η − 1)
1

2 + o(η − 1)
1

2 (29)

for s = −1 only. Both (28) and (29) imply that G′(1) = ∞ and hence the lubrication

approximation fails near η = 1. There is no immediate reason for disregarding either (28)

or (29); however, as we shall see shortly, there is no solution with the appropriate behaviour

as η → ∞ when s = −1, and so the local behaviour of G as η → 1+ is given by (28) with

s = 1.

3.2 Behaviour as η → ∞

As η → ∞ we have G ∼ G∞, and so writing G = G∞ + G1(η) in (26) and linearising for

small G1 gives

G2
∞

G′′

1 + sηG′

1 = 0. (30)
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A solution for G1 is possible only when s = 1; therefore for the remainder of section 3 we

shall consider only the case s = 1. Equation (30) can be integrated directly to yield

G1 = A

(
π

2G2
∞

) 1

2



1 − erf

(
η2

2G2
∞

) 1

2



 , (31)

where A is an undetermined real constant. Therefore

G ∼ G∞ + Aη−1 exp

(

− η2

2G2
∞

)

(32)

as η → ∞, and hence G approaches G∞ monotonically in this limit.

3.3 The singular limit G∞ → 0

In the singular limit G∞ → 0 we write G = G∞Ĝ(η) so that (26) becomes

G2
∞

(Ĝ3Ĝ′)′ + ηĜĜ′ = 0. (33)

In the limit G∞ → 0 the leading-order version of equation (33) is Ĝ′ = 0, and so the

appropriate outer solution is simply Ĝ = 1. This outer solution fails near the contact line

η = 1. In the inner region we introduce a rescaled coordinate defined by η = 1 + G2
∞

η̂, and

hence (using the matching condition with the outer solution) at leading order (33) becomes

Ĝ′ =
1

2
(Ĝ−3 − Ĝ−1). (34)

Solving (34) using the contact-line condition Ĝ = 0 at η̂ = 0 yields the implicit solution

η̂ = −
[
Ĝ2 + log(1 − Ĝ2)

]
, (35)

which is shown in Figure 2. Since the leading-order outer solution is a constant, the uniformly

valid leading-order composite solution is simply

G = G∞Ĝ

(
η − 1

G2
∞

)

. (36)

In particular, in the limit η → 1+ this solution satisfies

G = (2G2
∞

)
1

4 (η − 1)
1

4 − 1

3(2G2
∞

)
1

4

(η − 1)
3

4 + o(η − 1)
3

4 , (37)
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which coincides with (28) up to the order shown provided that a = (2G2
∞

)1/4 and s = 1.

Moreover, in the limit η → ∞ we have

G ∼ G∞ − G∞

2
exp

(

−1 +
1

G2
∞

)

exp

(

− η

G2
∞

)

; (38)

this differs somewhat from (32), but shows that G still approaches G∞ monotonically in this

limit.

3.4 Numerical solution

The system (11), (12) and (26) was solved numerically using an Adams method implemented

using the computer algebra package Mathematica. It was found that a real and positive

solution for G is possible only when s = 1 (which is consistent with section 3.2).

The numerical calculations were started from η = 1 + ζ for sufficiently small ζ ≪ 1 by

using (28) to give the approximate initial conditions

G(1 + ζ) = aζ
1

4 − 1

3a
ζ

3

4 , G′(1 + ζ) =
a

4
ζ−

3

4 − 1

4a
ζ−

1

4 . (39)

Equation (26) was integrated forwards in η for a range of values of a. In all the cases

investigated the solutions obtained approach a limiting value as η → ∞, and hence the

relationship between a and G∞ was determined. Figure 3 shows this relationship, and

compares it with the leading-order asymptotic solution in the limit G∞ → 0 calculated in

section 3.3, namely G∞ = (a4/2)1/2; clearly there is excellent agreement for sufficiently small

values of G∞. Typical free-surface profiles are shown in Figure 4 for a range of values of a.

Note that all the free-surface profiles in Figure 4 have a monotonically increasing shape.

3.5 Solution for h in the case C2 6= 0

The solution in the general case C2 6= 0 takes the form

h =

∣∣∣∣∣
2

θG2
∞

∣∣∣∣∣

1

2

G

(
y

ye

)

, ye =

∣∣∣∣∣
4J

3G2
∞

∣∣∣∣∣

1

2

, (40)

where G satisfies (26), which is valid provided that s = sgn(cos α(x−x0)) = 1. The solution

(40) is unique for each value of G∞; this solution represents both a narrowing (y′

e < 0)
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pendent (cos α < 0) dry patch in x ≤ x0, and a widening (y′

e > 0) sessile (cos α > 0)

dry patch in x ≥ x0. Provided that θ(x0) is finite and non-zero for |x0| < ∞ we have

J = O(x − x0) as x → x0, and hence ye = O(|x − x0|1/2) in this limit.

From (14) and (15) the conditions for this solution to be valid can be expressed as ǫ ≪ 1,

δ ≪ 1,

(
λ2(Tr − T∞)2γr

(ρg cos α)2Qµ

) 1

3

≪ l,
α2

thλ
3|Tr − T∞|3

k2
th(ρg cos α)2Qµ

≪ l, l ≪ λ|Tr − T∞|
τ

,

l ≪
(

λ3|Tr − T∞|3
(ρg cos α)2 tan2 αQµ

) 1

3

,

(
λ3|Tr − T∞|3
(ρg cos α)2Qµ

) 1

3

≪ l.

(41)

We proceed by giving the details of this solution for a particular choice of the substrate

temperature gradient. As a simple example we consider a power-law substrate temperature

gradient with θ = xk, where k is a constant. Considering solutions for x ≥ 0 (so that θ ≥ 0

and x0 ≥ 0) we have from (23)

J =






x1−2k − x1−2k
0

1 − 2k
k 6= 1

2
,

log
x

x0

k =
1

2
.

(42)

Evidently a solution with x0 = 0 is possible only for k < 1/2, and a solution with x0 = ∞
is possible only for k > 1/2. In the general case k 6= 1/2 the solution (40) is

h =

(
2

xkG2
∞

) 1

2

G

(
y

ye

)

, ye =

∣∣∣∣∣
4(x1−2k − x1−2k

0 )

3(1 − 2k)G2
∞

∣∣∣∣∣

1

2

, (43)

and in the special case k = 1/2 it is

h =

(
4

xG4
∞

) 1

4

G

(
y

ye

)

, ye =

∣∣∣∣∣
4 log x/x0

3G2
∞

∣∣∣∣∣

1

2

, (44)

both of which are valid provided that s = 1. In particular, in the special case of a uni-

form temperature gradient θ = 1 (that is, when k = 0) we find from (43) that ye =

2 (|x − x0|/3G2
∞

)
1/2

and h → 21/2 as |y| → ∞, so that the film is of uniform thickness

far from the dry patch.
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Figures 5–7 show the solutions for ye and h in cases with k = 0 (< 1/2), k = 1/2 and

k = 1 (> 1/2) respectively, for a range of values of x0. These figures show both narrowing

(y′

e < 0) pendent (cos α < 0) dry patches in x ≤ x0 (represented by the dashed lines in the

figures for ye), and widening (y′

e > 0) sessile (cos α > 0) dry patches in x ≥ x0 (represented

by the solid lines in the figures for ye). As the figures show, for x0 > 0 we have ye = O(1) as

x → 0+ when k < 1/2, and ye = O(xn) as x → 0+ when k > 1/2, where n = (1− 2k)/2. On

the other hand, for x0 = 0 (in which case k < 1/2) we have ye = O(xn) as x → 0+. Moreover

for x0 < ∞ we have ye = O(xn) as x → ∞ when k < 1/2, and ye = O(1) as x → ∞ when

k > 1/2. On the other hand, for x0 = ∞ (in which case k > 1/2) we have ye = O(xn) as

x → ∞. In the special case k = 1/2 for 0 < x0 < ∞ we have ye = O(| log x|1/2) both as

x → 0+ and as x → ∞.

Holland [11] gives details of the solution (40) for two further choices of the substrate

temperature gradient, namely an exponential temperature gradient and a spatially periodic

temperature gradient.

4 Thermocapillary-driven flow with a dry patch widen-

ing or narrowing due to surface tension

In this section we consider thermocapillary-driven flow with a dry patch that is widening or

narrowing due to surface tension (i.e. the case in which the second and last terms dominate

(3) and the thermocapillary term dominates (9)). As in section 3, the substrate temperature

distribution is taken to be in the form (13). Setting C = |∆C| = 1 we find that ǫ, δ and U

are given by

ǫ =

(
γrQµ

λ2(Tr − T∞)2l

) 1

4

≪ 1, δ =

(
Qµ

γrl

) 1

4

≪ 1, U =

(
λ|Tr − T∞|Q

µl

) 1

2

. (45)

The remaining terms in (3) and (9) are negligible provided that

ǫS sin α

δ
≪ 1, S| cos α| ≪ 1, B ≪ ǫ2, τ ≪ 1,

δ2

ǫ2
≪ 1, (46)

which, in particular, mean that gravity, surface heat transfer and surface shear stress must be

sufficiently small; however, unlike in the case considered in section 3, there is no restriction
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on α and so solutions are valid for 0 ≤ α ≤ π. In this case the governing equations (3) and

(9) reduce to

(h3hyyy)y +
3σT

2
(h2θ)x = 0 (47)

and (17) at leading order, where σT is given by (18). As in section 3, θ must be of one sign.

Seeking a solution of (47) and (17) in the form (10) we have

(G3G′′′)′ +
3σT

2b2
(C4G

2 − 2C5ηGG′) = 0 (48)

and (20), where

C4 =
(θf 2)′y4

e

f 4
, C5 =

θy3
ey

′

e

f 2
(49)

are constants. As in section 3, we can deduce immediately that C4 = 0.

Also, as in section 3, equation (48) has the trivial solution G = G∞ which satisfies

the far-field condition (12) but not the contact-line condition (11). However, we can again

truncate this solution at |η| = 1 to obtain the non-trivial solution (22), where ye = ye(x) is

an arbitrary function.

In the general case C5 6= 0 the product of C3 in (21) and C5 in (49) leads to (y4
e )

′ =

4C3C5θ
−2. Provided that C3C5J ≥ 0 (where the function J = J(x) is defined by (23)) we

have

ye = (4C3C5J)
1

4 . (50)

From C3 in (21) we again find that f is given by (25). With the choice b = |3C5|1/2 equation

(48) reduces to

(G3G′′′)′ − sηGG′ = 0, (51)

where s = σT sgn(C5) = sgn(y′

e), and the flux condition (20) becomes

1 =
3σT

2
C3|C5|G2

∞
. (52)

In the special case C5 = 0 the solution is again given by (22) with ye an arbitrary constant.

As in section 3, the exact solution of (51) that satisfies (11) and (12) has not been found;

however, again considerable analytical progress can still be made and the equation can be

solved numerically.
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4.1 Behaviour as η → 1+

The local behaviour of G as η → 1+ is given either by

G = a(η − 1)
3

4 +
16s

45a
(η − 1)

9

4 + o(η − 1)
9

4 (53)

or by

G = a(η − 1) +
s

4a
(η − 1)2[log(η − 1) + a0] + o(η − 1)2 (54)

for s = ±1, where a > 0 and a0 are arbitrary constants, or by

G =
2√
3
(η − 1)

3

2 + o(η − 1)
3

2 (55)

for s = −1 only. Note that (53) (but not (54) or (55)) implies that G′(1) = ∞ and hence

the lubrication approximation fails near η = 1 in that case. As in section 3.1, there is no

immediate reason for disregarding any of the solutions (53)–(55); however, as we shall see

subsequently, the present numerical results indicate that the behaviour is described by (53).1

4.2 Behaviour as η → ∞

As η → ∞ we have G ∼ G∞, and so writing G = G∞ + G1 in (51) and linearising for small

G1 gives

G2
∞

G′′′′

1 − sηG′

1 = 0. (56)

The exact solution of (56) can be found in terms of hypergeometric functions, but is not

particularly informative. However, information about the behaviour of G1 in the limit η → ∞
can be obtained by seeking a solution in the form G1 ∼ A0η

p exp(−A1η
q), where the complex

constants A0 and A1 (with Re(A1) > 0) and the real exponents p and q > 0 are to be

determined. Substituting this solution into (56) yields

A1 =
3

8G
2

3
∞

(1 ±
√

3i), p = −2

3
, q =

4

3
(57)

for s = 1, and

A1 =
3

4G
2

3
∞

, p = −2

3
, q =

4

3
(58)

1Note that there is an omission from the corresponding results in [6] for an isothermal gravity-driven dry

patch with strong surface-tension effects, which we rectify in the Appendix.
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for s = −1, but leaves A0 undetermined in both cases. Thus, in the limit η → ∞, we have

G ∼ G∞ + Aη−
2

3 exp



− 3

8G
2

3
∞

η
4

3



 cos



 3
√

3

8G
2

3
∞

η
4

3 + φ



 (59)

for s = 1, and

G ∼ G∞ + Aη−
2

3 exp



− 3

4G
2

3
∞

η
4

3



 (60)

for s = −1, where A is an undetermined real constant and φ is an undetermined phase shift

in the interval [0, π), and hence in the case s = 1, G approaches G∞ in an oscillatory manner,

while in the case s = −1, G approaches G∞ monotonically.

4.3 The singular limit G∞ → 0

In the singular limit G∞ → 0 we write G = G∞Ĝ so that (51) becomes

G2
∞

(Ĝ3Ĝ′′′)′ − sηĜĜ′ = 0. (61)

In the limit G∞ → 0 the leading-order version of equation (61) is again Ĝ′ = 0, and so the

appropriate outer solution is simply Ĝ = 1. As in section 3.3, this outer solution fails near

the contact line η = 1. In the inner region we introduce a rescaled coordinate defined by

η = 1 + G2/3
∞

η̂, and hence at leading order (61) becomes

Ĝ′′′ =
s

2
(Ĝ−1 − Ĝ−3). (62)

Unlike for the corresponding equation in section 3.3, we have been unable to find an exact

solution to this equation that satisfies the contact-line condition Ĝ = 0 at η̂ = 0.

In the case s = 1 seeking a solution of (62) near η̂ = 0 in the form Ĝ ∼ aη̂r requires that

r = 3/4 (in agreement with (53)) and a = (−32/15)1/4 (which is complex), suggesting that

there may be no solution to the problem in this limit in this case. This tentative conclusion

is confirmed by the present numerical results.

In the case s = −1 the local behaviour of Ĝ as η̂ → 0 is given by

Ĝ =
(

32

15

) 1

4

η̂
3

4 − 16

45

(
32

15

)−
1

4

η̂
9

4 + o(η̂
9

4 ). (63)
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The uniformly valid leading-order composite solution is simply

G = G∞Ĝ



η − 1

G
2

3
∞



 . (64)

In particular, in the limit η → 1+ this solution satisfies

G =

(
32G2

∞

15

) 1

4

(η − 1)
3

4 − 16

45

(
32G2

∞

15

)
−

1

4

(η − 1)
9

4 + o(η − 1)
9

4 , (65)

which coincides with (53) up to the order shown provided that a = (32G2
∞

/15)1/4 and s = −1.

There are no solutions in this limit that correspond to either (54) or (55). Moreover, in the

limit η → ∞ we have

G ∼ G∞ + A exp



− η

G
2

3
∞



 , (66)

where A is an undetermined real constant; this differs somewhat from (60), but shows that

G still approaches G∞ monotonically in this limit.

4.4 Numerical solution in the case s = 1

The system (11), (12) and (51) in the case when s = 1 was solved numerically using the

method described in section 3.4. The first numerical calculations were started from η = 1+ζ

for sufficiently small ζ ≪ 1 by using (53) and (54) to give approximate initial conditions.

However, neither (53) nor (54) yielded solutions for G that approach a limiting value as

η → ∞, as required; therefore all the numerical calculations presented here were instead

calculated by integrating backwards in η from η = X for sufficiently large X ≫ 1, and using

(59) to give the approximate initial conditions

G(X) = G∞ + AX−
2

3 exp(−A1rX
4

3 )Cφ,

G′(X) = A
(
−4

3

)
X−

1

3 exp(−A1rX
4

3 )(A1rCφ + A1iSφ),

G′′(X) = A
(
−4

3

)2

exp(−A1rX
4

3 )[(A2
1r − A2

1i)Cφ + 2A1rA1iSφ],

G′′′(X) = A
(
−4

3

)3

X
1

3 exp(−A1rX
4

3 )[(A2
1r − 3A2

1i)A1rCφ + (3A2
1r − A2

1i)A1iSφ],






(67)

where A1 = A1r + iA1i is defined in (57), Cφ = cos(A1iX
4/3 + φ) and Sφ = sin(A1iX

4/3 + φ).

The solutions calculated in this manner do not, in general, satisfy the contact-line condition

(11), and indeed in some cases solutions do not even have a contact line.
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Figure 8 shows numerically calculated solutions for G plotted as a function of η for several

values of A in the case when φ = 0 and G∞ = 1. The present numerical results reveal that

for A > Ac ≃ −3.77 the solutions do not have a contact line and diverge as η → −∞, while

for A ≤ Ac they have a contact line at η = η∗ which, in general, does not equal unity. When

A = Ac it is found that η∗ ≃ 0.878, and decreasing A increases η∗ until a maximum value of

η∗ ≃ 0.884 is reached when A ≃ −4.04, after which η∗ decreases as A decreases. Qualitatively

similar behaviour occurs for other values of φ and this is summarised in Figure 9, in which

we plot η∗/G1/2
∞

as a function of A/G4/3
∞

for a range of values of φ in the case G∞ = 1. (The

reason for scaling η∗ and A with G∞ in this way will become apparent shortly.) As Figure

9 shows, when φ is increased from zero the curves for η∗ as a function of A for fixed φ move

downwards, and for sufficiently large values of φ satisfying φ > φc ≃ 0.294π, the values of

η∗ are negative for all values of A and therefore do not appear on Figure 9 at all. Figure 9

also shows that there is no combination of values of A and φ for which η∗ = 1, and therefore

we deduce that there is no solution satisfying G(1) = 0 in the case G∞ = 1. However, there

are solutions that satisfy G(1) = 0 for larger values of G∞, and Figure 9 contains all the

information we need about the solutions when G∞ 6= 1. To understand this we write

G(η) = G∞Ḡ(η̄), η = G
1

2
∞η̄, A = G

4

3
∞Ā, (68)

where Ḡ = Ḡ(η̄) is exactly the solution of the problem in the case G∞ = 1 described above

with Ā in place of A. Thus plotting η∗/G1/2
∞

as a function of A/G4/3
∞

, as we have done in

Figure 9, gives the same curves for all values of G∞. Inspection of Figure 9 shows that

solutions with η∗ = 1 are impossible if G∞ < G∞c, where G∞c ≃ (0.884)−2 ≃ 1.280, but

for G∞ ≥ G∞c there are solutions for values of φ in the interval [0, φmax], where the value

of φmax (≤ φc) depends on G∞. In particular, Figure 9 shows that when φ = 0 there is

no solution for G∞ = 1 (< G∞c), two solutions in the case G∞ = 1.285 (which lies in the

range G∞c ≤ G∞ ≤ (0.878)−2 ≃ 1.297), and one solution in the case G∞ = 2 (> 1.297).

These solutions are shown in Figure 10. Figure 9 also shows that when G∞ = 10 (> G∞c)

there is one solution with φ = 0, φ = π/16 and φ = π/8, two solutions with φ = 3π/16,

but no solutions with φ = π/4. These solutions are shown in Figure 11. All the solutions in

Figures 10 and 11 have a characteristic capillary ridge near the contact line and decay in an

oscillatory manner as η → ∞.
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4.5 Numerical solution in the case s = −1

The system (11), (12) and (51) in the case when s = −1 was solved numerically using the

method described in section 4.4. In this case (60) was used to give the approximate initial

conditions

G(X) = G∞ + AX−
2

3 exp(−A1X
4

3 ),

G′(X) = A
(
−4A1

3

)
X−

1

3 exp(−A1X
4

3 ),

G′′(X) = A
(
−4A1

3

)2

exp(−A1X
4

3 ),

G′′′(X) = A
(
−4A1

3

)3

X
1

3 exp(−A1X
4

3 ),






(69)

where A1 is defined in (58). With these initial conditions the equation can be integrated

backwards in η and the value of A varied until the calculated position of the contact line where

G = 0 is sufficiently close to η = 1. Equation (53) was used to calculate the corresponding

value of a, and thus the relationship between a and G∞ determined. Figure 12 shows

this relationship, and compares it with the leading-order asymptotic solution in the limit

G∞ → ∞ calculated in section 4.3, namely G∞ = (15a4/32)1/2; clearly there is excellent

agreement for sufficiently small values of G∞. Typical free-surface profiles are shown in

Figure 13 for a range of values of G∞. Note that all the free-surface profiles in Figure 13

have a monotonically increasing shape.

4.6 Solution for h in the case C5 6= 0

The solution in the general case C5 6= 0 takes the form

h =

∣∣∣∣∣
2

θG2
∞

∣∣∣∣∣

1

2

G

(
y

ye

)

, ye =

∣∣∣∣∣
8J

3G2
∞

∣∣∣∣∣

1

4

, (70)

where G satisfies (51), which is valid for both s = 1 and s = −1, where s = sgn(x−x0). In the

case s = 1 there is no solution when G∞ < G∞c ≃ 1.280, but for G∞ ≥ G∞c equation (70)

represents a one-parameter family of solutions (parameterised by φ). In the case s = −1,

equation (70) represents a unique solution for h for each value of G∞. The solution (70)

represents both a narrowing (y′

e < 0) dry patch with s = −1 in x ≤ x0 (which is analogous

to the case cos α < 0 in section 3), and a widening (y′

e > 0) dry patch with s = 1 in x ≥ x0

(which is analogous to the case cosα > 0 in section 3). Provided that θ(x0) is finite and
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non-zero for |x0| < ∞ we have J = O(x − x0) as x → x0, and hence ye = O(|x − x0|1/4) in

this limit.

From (45) and (46) the conditions for this solution to be valid can be expressed as ǫ ≪ 1,

δ ≪ 1,

l ≪
(

λ3|Tr − T∞|3
(ρg sin α)2Qµ

) 1

3

, l ≪
(

λ2(Tr − T∞)2γr

(ρg cos α)2Qµ

) 1

3

,

l ≪
(

k2
thγr

α2
thλ|Tr − T∞|

) 1

2

, l ≪ λ|Tr − T∞|
τ

,
λ|Tr − T∞|

γr

≪ 1.

(71)

As an example we consider again the case of a power-law substrate temperature gradient

with θ = xk for x ≥ 0. In the general case k 6= 1/2 the solution (70) is

h =

(
2

xkG2
∞

) 1

2

G

(
y

ye

)

, ye =

∣∣∣∣∣
8(x1−2k − x1−2k

0 )

3(1 − 2k)G2
∞

∣∣∣∣∣

1

4

, (72)

and in the special case k = 1/2 it is

h =

(
4

xG4
∞

) 1

4

G

(
y

ye

)

, ye =

∣∣∣∣∣
8 log x/x0

3G2
∞

∣∣∣∣∣

1

4

. (73)

In particular, in the special case of a uniform temperature gradient θ = 1 (that is, when

k = 0) we find from (72) that ye = |8(x−x0)/3G
2
∞
|1/4 and h → 21/2 as |y| → ∞, so that the

film is again of uniform thickness far from the dry patch.

In the case s = −1 the solutions for ye and h are qualitatively similar to those given in

section 3.5 and so examples are omitted for the sake of brevity. However in the case s = 1

the solution has a capillary ridge near the contact line. This latter behaviour is illustrated

in Figure 14, which shows the solution for h in the case θ = x (i.e. k = 1) when s = 1, φ = 0

and x0 = 10.

For x0 > 0 we have ye = O(1) as x → 0+ when k < 1/2, and ye = O(xn) as x → 0+ when

k > 1/2, where n = (1 − 2k)/4. On the other hand, for x0 = 0 (in which case k < 1/2) we

have ye = O(xn) as x → 0+. Moreover for x0 < ∞ we have ye = O(xn) as x → ∞ when

k < 1/2, and for 0 < x0 < ∞ we have ye = O(1) as x → ∞ when k > 1/2. On the other

hand, for x0 = ∞ (in which case k > 1/2) we have ye = O(xn) as x → ∞. In the special

case k = 1/2 for 0 < x0 < ∞ we have ye = O(| log x|1/4) both as x → 0+ and as x → ∞.
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Holland [11] gives details of the solution (70) for the two further choices of the substrate

temperature gradient mentioned in section 3.5.

5 Gravity-driven flow with a dry patch widening or

narrowing due to thermocapillarity

In this section we consider gravity-driven flow down a uniformly heated or cooled substrate

(so that T0 ≡ 1) with a dry patch that is widening or narrowing due to thermocapillarity (i.e.

the case in which the fourth and fifth terms dominate (3) and the gravity term dominates

(9)). Setting ǫS sin α/δ = B/ǫ2|∆C| = 1 we find that ǫ, δ and U are given by

ǫ =

(
αthλ|Tr − T∞|
kthρg sin αl

) 1

2

≪ 1, δ =

(
k3

thρg sin αQ2µ2

α3
thλ

3|Tr − T∞|3l3
) 1

6

≪ 1, U =

(
ρg sin αQ2

µ

) 1

3

.

(74)

The remaining terms in (3) and (9) are negligible provided that

1

C
≪ 1, τ ≪ 1,

δ

ǫ
≪ | tan α|, (75)

which, in particular, mean that surface tension and surface shear stress must be sufficiently

small, and that α is not near 0 or π (so that the substrate is not horizontal or nearly

horizontal). Similarity solutions cannot be found when B 6= 0, and therefore we restrict our

attention to the adiabatic limit B → 0. In this case the governing equations (3) and (9)

reduce to

σT (h3)yy + 2(h3)x = 0 (76)

and

1 =
h3
∞

3
(77)

at leading order, where σT is given by (18).

Seeking a solution of (76) and (77) in the form (10) we have

(G3)′′ + 6σT

(
f ′y2

e

f
G3 − yey

′

eηG2G′

)

= 0 (78)

and

1 =
(bfG∞)3

3
. (79)
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In this case we find that the relevant forms for f and ye are

f = 1, ye = (cx)
1

2 , (80)

with the constant c to be determined; without loss of generality we have taken x0 = 0 here.

Note that the dry patch has a parabolic shape, and that since f = 1 the film is of uniform

thickness far from the dry patch in this case. Then from (78) the equation for G is

(G3)′′ − cσT η(G3)′ = 0. (81)

With the choice b = 31/3 the flux condition (79) yields G∞ = 1. Thus solving (81) using the

conditions (11) and (12), we find that

G =

[
erf(Kη) − erf(K)

1 − erf(K)

] 1

3

(82)

for cσT < 0, where we have defined K = (−cσT /2)1/2 > 0, which satisfies

G =

[
2K exp(−K2)√
π(1 − erf(K))

] 1

3

(η − 1)
1

3 + O(η − 1)
4

3 (83)

as η → 1+ and

G ∼ 1 − η−1 exp(−K2η2)

3
√

πK(1 − erf(K))
(84)

as η → ∞. Hence the solution takes the form

h =





3




erf

(

−σT y2

2x

) 1

2

− erf

(

−σT y2
e

2x

) 1

2






1 − erf

(

−σT y2
e

2x

) 1

2





1

3

, ye = (cx)
1

2 , (85)

which is valid only for σT x < 0.

The solution (85) is unique for each value of the parameter c; this solution represents

both a narrowing (y′

e < 0) dry patch in x < 0 when the substrate is heated (σT = 1), and

a widening (y′

e > 0) dry patch in x > 0 when the substrate is cooled (σT = −1). The

free-surface temperature (1 + Bh)−1 = 1−Bh + O(B2) is a decreasing function of h. In the

case when the substrate is heated (σT = 1) the surface tension γ = 1+σT δ2Ch(1+Bh)−1 =

1 + σT δ2Ch + O(B) is an increasing function of h, and hence there is a gradient of surface
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tension that drives a transverse flux outwards away from y = ±ye and towards y = ±∞,

counter-intuitively causing the dry patch to narrow. In the case when the substrate is cooled

(σT = −1) the converse holds, causing the dry patch to widen. Figure 15 shows the solution

for h in the case σT = −1 when c = 1; the corresponding solution in the case σT = 1 is

a reflection of this in the plane x = 0. Note that the free-surface profile in this case has a

monotonically increasing shape, and that h → h∞ = 31/3 as |y| → ∞.

From (74) and (75) the conditions for this solution to be valid can be expressed as ǫ ≪ 1,

δ ≪ 1,

(
k6

th(ρg sin α)2γ3
r Qµ

α6
thλ

6(Tr − T∞)6

) 1

3

≪ l,
τ 3

(ρg sin α)2Qµ
≪ 1, 1 ≪ α3

thλ
3|Tr − T∞|3| tan α|3

k3
th(ρg sin α)2Qµ

. (86)

6 Shear-stress-driven flow with a dry patch widening

or narrowing due to thermocapillarity

In this section we consider shear-stress-driven flow down a uniformly heated or cooled sub-

strate (so that, as in section 5, T0 ≡ 1) with a dry patch that is widening or narrowing due

to thermocapillarity (i.e. the case in which the fourth and sixth terms dominate (3) and the

shear-stress term dominates (9)). Setting τ = B/ǫ2|∆C| = 1 we find that ǫ, δ and U are

given by

ǫ =

(
α2

thλ
2(Tr − T∞)2Qµ

k2
thl

2τ 3

) 1

4

≪ 1, δ =

(
k2

thQµτ

α2
thλ

2(Tr − T∞)2l2

) 1

4

≪ 1, U =

(
Qτ

µ

) 1

2

.

(87)

The remaining terms in (3) and (9) are negligible provided that

ǫS sin α

δ
≪ 1, S| cos α| ≪ 1,

1

C
≪ 1, (88)

which, in particular, mean that gravity and surface tension must be sufficiently small; how-

ever, unlike in the case considered in section 5, there is no restriction on α and so the

solutions are valid for 0 ≤ α ≤ π. As in section 5, we restrict our attention to the adiabatic

limit B → 0. In this case the governing equations (3) and (9) reduce to

σT (h3)yy + 3(h2)x = 0 (89)
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and

1 =
h2
∞

2
(90)

at leading order, where σT is given by (18).

Seeking a solution of (89) and (90) in the form (10) we have

(G3)′′ +
6σT

b

(
f ′y2

e

f 2
G2 − yey

′

e

f
ηGG′

)

= 0 (91)

and

1 =
(bfG∞)2

2
. (92)

In this case we find that the relevant forms for f and ye are again given by (80) with the

constant c to be determined; without loss of generality we have again taken x0 = 0 here.

Note that, as in section 5, the dry patch has a parabolic shape, and the film is of uniform

thickness far from the dry patch in this case. With the choice b = 3|c| equation (91) reduces

to

(G3)′′ − sηGG′ = 0, (93)

where s = σT sgn(c), and the flux condition (92) becomes

1 =
(3cG∞)2

2
. (94)

As in sections 3 and 4, the exact solution of (93) that satisfies (11) and (12) has not been

found; however, again considerable analytical progress can still be made and the equation

can be solved numerically.

6.1 Behaviour as η → 1+

The local behaviour of G as η → 1+ is given either by

G = a(η − 1)
1

3 +
s

10
(η − 1) + o(η − 1) (95)

for s = ±1, where a > 0 is an arbitrary constant, or by

G =
s

6
(η − 1) +

s

18
(η − 1)2 + o(η − 1)2 (96)
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for s = 1 only. Note that (95) (but not (96)) implies that G′(1) = ∞ and hence the

lubrication approximation fails near η = 1 in that case. There is no immediate reason for

disregarding either (95) or (96); however, as we shall see shortly, there is no solution with

the appropriate behaviour as η → ∞ when s = 1, and so the local behaviour of G as η → 1+

is given by (95) with s = −1.

6.2 Behaviour as η → ∞

As η → ∞ we have G ∼ G∞, and so writing G = G∞ + G1 in (93) and linearising for small

G1 gives

3G∞G′′

1 − sηG′

1 = 0. (97)

A solution for G1 is possible only when s = −1; therefore for the remainder of section 6 we

shall consider only the case s = −1. Equation (97) can be integrated directly to yield

G1 = A
(

π

6G∞

) 1

2



1 − erf

(
η2

6G∞

) 1

2



 , (98)

where A is an undetermined real constant. Therefore

G ∼ G∞ + Aη−1 exp

(

− η2

6G∞

)

(99)

as η → ∞, and hence G approaches G∞ monotonically in this limit.

6.3 The singular limit G∞ → 0

In the singular limit G∞ → 0 we write G = G∞Ĝ so that (93) becomes

G∞(Ĝ3)′′ + ηĜĜ′ = 0. (100)

In the limit G∞ → 0 the leading-order version of equation (100) is again Ĝ′ = 0, and so the

appropriate outer solution is simply Ĝ = 1. As in sections 3.3 and 4.3, this outer solution

fails near the contact line η = 1. In the inner region we introduce a rescaled coordinate

defined by η = 1 + G∞η̂, and hence at leading order (100) becomes

Ĝ′ =
1

6
(Ĝ−2 − 1). (101)
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Solving (101) using the contact-line condition Ĝ = 0 at η̂ = 0 yields the implicit solution

η̂ = 6(tanh−1 Ĝ − Ĝ), (102)

which is shown in Figure 16. The uniformly valid leading-order composite solution is simply

G = G∞Ĝ
(

η − 1

G∞

)
. (103)

In particular, in the limit η → 1+ this solution satisfies

G =

(
G2

∞

2

) 1

3

(η − 1)
1

3 − 1

10
(η − 1) + o(η − 1), (104)

which coincides with (95) up to the order shown provided that a = (G2
∞

/2)1/3 and s = −1.

Moreover, in the limit η → ∞ we have

G ∼ G∞ − 2G∞ exp
(
−2 +

1

3G∞

)
exp

(
− η

3G∞

)
; (105)

this differs somewhat from (99), but shows that G still approaches G∞ monotonically in this

limit.

6.4 Numerical solution

The system (11), (12) and (93) was solved numerically using the method described in section

3.4. It was found that a real and positive solution for G is possible only when s = −1 (which

is consistent with section 6.2). The numerical calculations were started from η = 1 + ζ for

sufficiently small ζ ≪ 1 by using (95) to give the approximate initial conditions

G(1 + ζ) = aζ
1

3 − 1

10
ζ, G′(1 + ζ) =

a

3
ζ−

2

3 − 1

10
. (106)

Figure 17 shows the relationship between a and G∞, and compares it with the leading-order

asymptotic solution in the limit G∞ → ∞ calculated in section 6.3, namely G∞ = (2a3)1/2;

clearly there is excellent agreement for sufficiently small values of G∞. Typical free-surface

profiles are shown in Figure 18 for a range of values of a. Note that all the free-surface

profiles in Figure 18 have a monotonically increasing shape.
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6.5 Solution for h

The solution takes the form

h = 3|c|G
(

y

ye

)

=

(
2

G2
∞

) 1

2

G

(
y

ye

)

, ye = (cx)
1

2 =

(

−
√

2σT x

3G∞

) 1

2

, (107)

where G satisfies (93), which is valid only for σT x < 0. The solution (107) is unique for each

value of G∞ or c; this solution represents both a narrowing (y′

e < 0) dry patch in x < 0

when the substrate is heated (σT = 1), and a widening (y′

e > 0) dry patch in x > 0 when the

substrate is cooled (σT = −1). This behaviour is qualitatively the same as that described in

section 5 and has the same physical explanation. Figure 19 shows the solution for h in the

case σT = −1 when G∞ = 1 (c = 21/2/3); the corresponding solution in the case σT = 1 is

a reflection of this in the plane x = 0. Note that the free-surface profile in this case has a

monotonically increasing shape, and that h → h∞ = 21/2 as |y| → ∞.

From (87) and (88) the conditions for this solution to be valid can be expressed as ǫ ≪ 1,

δ ≪ 1,

1 ≪ τ 3

(ρg sin α)2Qµ
,

k2
th(ρg cos α)2Qµ

α2
thλ

2(Tr − T∞)2τ
≪ 1,

k2
thγrτ

α2
thλ

2(Tr − T∞)2
≪ l. (108)

7 Conclusions

In this paper we used the lubrication approximation to investigate slender dry patches in an

infinitely wide film of viscous fluid flowing steadily on an inclined plane that is either heated

or cooled relative to the surrounding atmosphere. Four non-isothermal situations in which

thermocapillary effects play a significant role were considered.

Similarity solutions describing a thermocapillary-driven flow with a dry patch that is

widening or narrowing due to either gravitational or surface-tension effects on a non-uniformly

heated or cooled substrate were obtained, and we presented examples of these solutions when

the substrate temperature gradient depends on the longitudinal coordinate x according to a

general power law. In the case of strong gravitational effects the solution contains the free

parameter G∞ > 0, and for each value of this parameter there is a unique solution represent-

ing both a narrowing pendent dry patch and a widening sessile dry patch, whose transverse
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profile has a monotonically increasing shape. In the case of strong surface-tension effects the

solution also contains the free parameter G∞, and for each value of this parameter there is

both a unique solution representing a narrowing dry patch, whose transverse profile has a

monotonically increasing shape, and a one-parameter family of solutions (parameterised by

φ) representing a widening dry patch, whose transverse profile has a capillary ridge near the

contact line and decays in an oscillatory manner far from it.

We also obtained similarity solutions describing both a gravity-driven and a constant-

surface-shear-stress-driven flow with a dry patch that is widening or narrowing due to ther-

mocapillarity on a uniformly heated or cooled substrate. The solutions in both cases contain

a free parameter (c in the former case, G∞ or c in the latter one) and for each value of this

parameter there is a unique solution representing both a narrowing dry patch on a heated

substrate and a widening dry patch on a cooled substrate, whose transverse profile has a

monotonically increasing shape.

Note that all the present dry-patch similarity solutions (like the isothermal dry-patch

similarity solutions obtained by Wilson et al. [6]) are valid only away from the contact line

where the lubrication approximation fails because they have infinite slope, and hence to

obtain the complete solution it would be necessary to formulate and solve the appropriate

“inner” Stokes flow problem valid near the contact line subject to appropriate matching

conditions with the present “outer” similarity solutions valid far from the contact line.

As far as the authors are aware, there are no experimental results for non-isothermal

dry patches with which the present analytical solutions may be compared. However, we

note that experimental results for isothermal dry patches show the existence of a maximum

critical volume flux for a dry patch to occur, while the present solutions (in common with

the corresponding isothermal solutions of Wilson et al. [6]) predict either that a dry patch

can occur for all values of the flux or that there is a minimum critical flux for a dry patch to

occur, i.e. they are not able to predict the expected maximum critical flux without invoking

an additional assumption.

28



Acknowledgements

The first author (DH) wishes to thank the Engineering and Physical Sciences Research Coun-

cil for financial support via a studentship during the course of the present work. The second

author (SKW) gratefully acknowledges the ongoing financial support of the Leverhulme Trust

via a Research Fellowship.

Appendix

In this appendix we present two new local solutions near η = 1 for an isothermal gravity-

driven dry patch with strong surface-tension effects that were omitted from section 5.1 of

Wilson et al. [6], namely

G = a1(η − 1) + a2(η − 1)2 +
1

6
(η − 1)3 +

1

32
(η − 1)4 + O(η − 1)5, (A1)

where a1 > 0 and a2 are arbitrary constants, and

G = a2(η − 1)2 +
1

6
(η − 1)3 +

1

28
(η − 1)4 + O(η − 1)5, (A2)

where a2 > 0 is an arbitrary constant. However, the numerical results presented in section

5.4 of Wilson et al. [6] indicate that the behaviour in the limit η → 1+ is always given by

their (5.3) and not (A1) or (A2), and therefore the rest of their paper is unaffected by the

existence of these additional solutions.
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Figure Captions

Figure 1. Geometry of the problem.

Figure 2. A thermocapillary-driven flow with a dry patch widening or narrowing due to

gravity: the inner solution for the free-surface profile in the limit G∞ → 0, Ĝ(η̂), given by

(35) plotted as a function of η̂.

Figure 3. Numerically calculated values of log10(G∞) obtained in section 3.4 plotted as

a function of log10(a) together with the leading-order asymptotic value of G∞ in the limit

G∞ → 0, namely G∞ = (a4/2)1/2.

Figure 4. Numerically calculated free-surface profiles G(η) obtained in section 3.4 plotted

as a function of η for a = 1, 2, . . . , 5.

Figure 5. (a) Solutions for ye from (40) in the case θ = 1 for x0 = 0, 1, ..., 10 showing both

narrowing (y′

e < 0) pendent (cos α < 0) dry patches in x ≤ x0 (represented by the dashed

lines), and widening (y′

e > 0) sessile (cos α > 0) dry patches in x ≥ x0 (represented by the

solid lines), together with numerically calculated three-dimensional plots of the solution h

given by (40) in (b) the sessile case when x0 = 1, and (c) the pendent case when x0 = 10.

Note that the direction of flow is from top to bottom in (b), but from bottom to top in (c).

Furthermore, note that for the particular choice θ = 1 (but not in general otherwise) the

solution in the pendent case is a reflection of that in the sessile case.

Figure 6. As for Figure 5 except that θ = x1/2 and (a) is exclusive of x0 = 0.

Figure 7. As for Figure 5 except that θ = x and (a) is exclusive of x0 = 0.

Figure 8. A thermocapillary-driven flow with a dry patch widening or narrowing due to

surface tension: numerically calculated free-surface profiles G(η) obtained in section 4.4

plotted as a function of η when s = 1, φ = 0, G∞ = 1 for A = −1.5,−3,−4,−5,−8 and

−15. Note that none of the profiles shown have a contact line at η = 1 (and indeed those in

the cases A = −1.5 and −3 do not have a contact line at all).

Figure 9. Numerically calculated values of the scaled contact-line position η∗/G1/2
∞

obtained
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in section 4.4 plotted as a function of A/G4/3
∞

for a range of values of φ.

Figure 10. Numerically calculated free-surface profiles G(η) obtained in section 4.4 plotted

as a function of η when s = 1 and φ = 0 for G∞ = 1.285 (two almost identical solutions

with A ≃ −5.53 and A ≃ −5.74, respectively) and G∞ = 2 (one solution with A ≃ −16.0).

Figure 11. Numerically calculated free-surface profiles G(η) obtained in section 4.4 plotted

as a function of η when s = 1 and G∞ = 10 for φ = 0 (one solution with A ≃ −184),

φ = π/16 (one solution with A ≃ −142), φ = π/8 (one solution with A ≃ −105) and

φ = 3π/16 (two solutions with A ≃ −43 and A ≃ −65, respectively).

Figure 12. Numerically calculated values of log10(G∞) obtained in section 4.5 plotted as

a function of log10(a) together with the leading-order asymptotic value of G∞ in the limit

G∞ → 0, namely G∞ = (15a4/32)1/2, when s = −1.

Figure 13. Numerically calculated free-surface profiles G(η) obtained in section 4.5 plotted

as a function of η for G∞ = 1, 2, 3, 4 when s = −1.

Figure 14. Numerically calculated three-dimensional plot of the solution h given by (72)

in the case θ = x when s = 1, φ = 0 and x0 = 10.

Figure 15. A gravity-driven flow with a dry patch widening or narrowing due to thermo-

capillarity: three-dimensional plot of the solution h given by (85) in the case σT = −1 when

c = 1.

Figure 16. A shear-stress-driven flow with a dry patch widening or narrowing due to

thermocapillarity: the inner solution for the free-surface profile in the limit G∞ → 0, Ĝ(η̂),

given by (102) plotted as a function of η̂.

Figure 17. Numerically calculated values of log10(G∞) obtained in section 6.4 plotted as

a function of log10(a) together with the leading-order asymptotic value of G∞ in the limit

G∞ → 0, namely G∞ = (2a3)1/2.

Figure 18. Numerically calculated free-surface profiles G(η) obtained in section 6.4 plotted

as a function of η for a = 1, 2, . . . , 5.
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Figure 19. Numerically calculated three-dimensional plot of the solution h given by (107)

in the case σT = −1 when G∞ = 1 (c = 21/2/3).
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