Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Mathematical modelling for keyhole surgery simulations: a biomechanical model for spleen tissue

Davies, P.J. and Cuschieri, A. and Carter, F.J. (2002) Mathematical modelling for keyhole surgery simulations: a biomechanical model for spleen tissue. IMA Journal of Applied Mathematics, 67 (1). pp. 41-67. ISSN 0272-4960

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

There is growing interest in the potential for computer simulations to provide good training materials for abdominal endoscopic or 'keyhole' surgery. This paper describes a preliminary study of the mechanical properties of abdominal (spleen) tissue. We show how experimental force-displacement data can be used to derive a biomechanical model for the tissue as an incompressible, homogeneous, isotropic nonlinear elastic material with an exponential stress-strain law. We also show how the model can be used to predict the response of the tissue to a surgical probe. This involves solving a complicated nonlinear constrained boundary-value problem, and there is a good fit between the computed solution and experimental data.