Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Coupled thermo-mechanical modelling of friction stir welding

Li, Hongjun and Mackenzie, Donald (2007) Coupled thermo-mechanical modelling of friction stir welding. In: Proceedings of the 2007 ASME Pressure Vessels and Piping Conference. Proceedings of the ASME Pressure Vesels and Piping Conference, 5 . American Society of Mechanical Engineers, New York, pp. 193-201. ISBN 9780791842836

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Paper presented at the 2007 ASME Pressure Vessels and Piping Conference, 22-26 July, San Antonio, Texas USA. The significant development in welding technology for the last decade is the emergence of Friction Stir Welding (FSW). This paper investigates the thermo-mechanical phenomena involved in the FSW welded plates by Finite Element Analysis. The numerical models are fully thermo-mechanically coupled in that heat generated by material plastic deformation and temperature dependent mechanical material properties are taken into account. The whole FSW process is divided into three distinct stages: plunge, dwell and transverse. The transient temperature, stress and velocity of material particles around the tool are reported from the numerical models. It is found that temperature plays an important role in obtaining a sound weld, and only when a proper temperature field is established can the FSW process proceed to next stage. It is also found that it is not possible to fully simulate the FSW process using the ALE formulation without full remeshing during the travel stage of the process due to excessive element distortion.