Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Global error versus tolerance for explicit Runge-Kutta methods

Higham, Desmond J. (1991) Global error versus tolerance for explicit Runge-Kutta methods. IMA Journal of Numerical Analysis, 11 (4). pp. 457-480. ISSN 0272-4979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Initial value solvers typically input a problem specification and an error tolerance, and output an approximate solution. Faced with this situation many users assume, or hope for, a linear relationship between the global error and the tolerance. In this paper we examine the potential for such 'tolerance proportionality' in existing explicit Runge-Kutta algorithms. We take account of recent developments in the derivation of high-order formulae, defect control strategies, and interpolants for continuous solution and first derivative approximations. Numerical examples are used to verify the theoretical predictions. The analysis draws on the work of Stetter, and the numerical testing makes use of the nonstiff DETEST package of Enright and Pryce.