Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Competitive effect of grooves and photoalignment on nematic liquid-crystal alignment using azobenzene polymer

Chang, Doo-Han and Fukuda, Takashi and Takanishi, Yoichi and Ishikawa, Ken and Matsuda, Hiro and Takezoe, Hideo and Osipov, Mikhail A. (2002) Competitive effect of grooves and photoalignment on nematic liquid-crystal alignment using azobenzene polymer. Journal of Applied Physics, 92 (4). pp. 1841-1844. ISSN 0021-8979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Effect of an anisotropic photoalignment layer and microgrooves on nematic liquid-crystal (LC) alignment was quantitatively examined using azobenzene polymer thin film with surface relief grating (SRG) of about 1 µm pitch. The SRG with various modulation depths was treated with polarized light irradiation to align molecules at 45° from the groove. Nematic LC molecules, 4-n-pentyl-4-cyanobiphenyl, orient to the photoaligned direction on the SRG being shallower than 200 nm. The orientation rather sharply deviates from the photoaligned direction toward the groove direction with increasing grating depth into the deeper region than 200 nm and finally becomes parallel to the grooves on the SRG of 400 nm deep. This behavior is successfully simulated by the consideration of anisotropic surface interaction and an elastic energy of LCs.