Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Computational solution of two-dimensional unsteady PDEs using moving mesh methods

Beckett, G. and Ramage, A. and Sloan, D.M. and Mackenzie, J.A. (2002) Computational solution of two-dimensional unsteady PDEs using moving mesh methods. Journal of Computational Physics, 182 (2). pp. 478-495. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Numerical experiments are described which illustrate some important features of the performance of moving mesh methods for solving two-dimensional partial differential equations (PDEs). Here we are concerned with algorithms based on moving mesh methods proposed by W. Huang and R. D. Russell [SIAM J. Sci. Comput.20, 998 (1999)]. We show that the accuracy of the computations is strongly influenced by the choice of monitor function, and we present a monitor function which yields a higher rate of convergence than those that are commonly used. In an earlier paper [G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, J. Comput. Phys.167, 372 (2001)], we demonstrated a robust and efficient algorithm for problems in one space dimension in which the mesh equation is decoupled from the physical PDE and the time step is controlled automatically. The present work extends this algorithm to deal with problems in two space dimensions.