Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Computational solution of two-dimensional unsteady PDEs using moving mesh methods

Beckett, G. and Ramage, A. and Sloan, D.M. and Mackenzie, J.A. (2002) Computational solution of two-dimensional unsteady PDEs using moving mesh methods. Journal of Computational Physics, 182 (2). pp. 478-495. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Numerical experiments are described which illustrate some important features of the performance of moving mesh methods for solving two-dimensional partial differential equations (PDEs). Here we are concerned with algorithms based on moving mesh methods proposed by W. Huang and R. D. Russell [SIAM J. Sci. Comput.20, 998 (1999)]. We show that the accuracy of the computations is strongly influenced by the choice of monitor function, and we present a monitor function which yields a higher rate of convergence than those that are commonly used. In an earlier paper [G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, J. Comput. Phys.167, 372 (2001)], we demonstrated a robust and efficient algorithm for problems in one space dimension in which the mesh equation is decoupled from the physical PDE and the time step is controlled automatically. The present work extends this algorithm to deal with problems in two space dimensions.