Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Computational solution of two-dimensional unsteady PDEs using moving mesh methods

Beckett, G. and Ramage, A. and Sloan, D.M. and Mackenzie, J.A. (2002) Computational solution of two-dimensional unsteady PDEs using moving mesh methods. Journal of Computational Physics, 182 (2). pp. 478-495. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Numerical experiments are described which illustrate some important features of the performance of moving mesh methods for solving two-dimensional partial differential equations (PDEs). Here we are concerned with algorithms based on moving mesh methods proposed by W. Huang and R. D. Russell [SIAM J. Sci. Comput.20, 998 (1999)]. We show that the accuracy of the computations is strongly influenced by the choice of monitor function, and we present a monitor function which yields a higher rate of convergence than those that are commonly used. In an earlier paper [G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, J. Comput. Phys.167, 372 (2001)], we demonstrated a robust and efficient algorithm for problems in one space dimension in which the mesh equation is decoupled from the physical PDE and the time step is controlled automatically. The present work extends this algorithm to deal with problems in two space dimensions.