Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The HP-MITC finite element method for the Reissner-Mindlin Plate Problem

Ainsworth, M. and Pinchedez, K. (2002) The HP-MITC finite element method for the Reissner-Mindlin Plate Problem. Journal of Computational and Applied Mathematics, 148 (2). pp. 429-462. ISSN 0377-0427

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The popular MITC finite elements used for the approximation of the Reissner-Mindlin plate are extended to the case where elements of non-uniform degree p distribution are used on locally refined meshes. Such an extension is of particular interest to the hp-version and hp-adaptive finite element methods. A priori error bounds are provided showing that the method is locking-free. The analysis is based on new approximation theoretic results for non-uniform Brezzi-Douglas-Fortin-Marini spaces, and extends the results obtained in the case of uniform order approximation on globally quasi-uniform meshes presented by Stenberg and Suri (SIAM J. Numer. Anal. 34 (1997) 544). Numerical examples illustrating the theoretical results and comparing the performance with alternative standard Galerkin approaches are presented for two new benchmark problems with known analytic solution, including the case where the shear stress exhibits a boundary layer. The new method is observed to be locking-free and able to provide exponential rates of convergence even in the presence of boundary layers.