Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Thermocapillary effects on a thin rivulet draining down a heated or cooled surface

Holland, D.B. and Duffy, B.R. and Wilson, S.K. (2001) Thermocapillary effects on a thin rivulet draining down a heated or cooled surface. In: American Physical Society, 53rd Annual Meeting of the Division of Fluid Dynamics, 2000-11-19 - 2000-11-21.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We use the lubrication approximation to investigate the steady flow of a thin rivulet of viscous fluid draining down a heated or cooled planar or slowly varying substrate when the surface tension of the fluid varies linearly with temperature. Utilizing the (implicit) solution of the governing ordinary differential equation that emerges, we undertake a comprehensive asymptotic and numerical analysis of the flow. In particular, we find that the variation in surface tension drives a transverse flow that causes fluid particles to spiral down the rivulet in helical vortices. We find that a continuous rivulet can run from the top to the bottom of a large horizontal circular cylinder provided that the cylinder is heated or significantly cooled, but that if it is only slightly cooled then a continuous rivulet is possible only for a sufficiently small volume flux.