Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Thermocapillary effects on a thin rivulet draining down a heated or cooled surface

Holland, D.B. and Duffy, B.R. and Wilson, S.K. (2001) Thermocapillary effects on a thin rivulet draining down a heated or cooled surface. In: American Physical Society, 53rd Annual Meeting of the Division of Fluid Dynamics, 2000-11-19 - 2000-11-21.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We use the lubrication approximation to investigate the steady flow of a thin rivulet of viscous fluid draining down a heated or cooled planar or slowly varying substrate when the surface tension of the fluid varies linearly with temperature. Utilizing the (implicit) solution of the governing ordinary differential equation that emerges, we undertake a comprehensive asymptotic and numerical analysis of the flow. In particular, we find that the variation in surface tension drives a transverse flow that causes fluid particles to spiral down the rivulet in helical vortices. We find that a continuous rivulet can run from the top to the bottom of a large horizontal circular cylinder provided that the cylinder is heated or significantly cooled, but that if it is only slightly cooled then a continuous rivulet is possible only for a sufficiently small volume flux.