Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

GENSMAC 3D: A numerical method for solving unsteady three-dimensional free surface flows

Tomé, M.F. and Filho, A.C. and Cuminato, J.A. and Mangiavacchi, N. and McKee, S. (2001) GENSMAC 3D: A numerical method for solving unsteady three-dimensional free surface flows. International Journal of Numerical Methods in Fluids, 37 (7). pp. 747-796. ISSN 0271-2091

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A numerical method for solving three-dimensional free surface flows is presented. The technique is an extension of the GENSMAC code for calculating free surface flows in two dimensions. As in GENSMAC, the full Navier-Stokes equations are solved by a finite difference method; the fluid surface is represented by a piecewise linear surface composed of quadrilaterals and triangles containing marker particles on their vertices; the stress conditions on the free surface are accurately imposed; the conjugate gradient method is employed for solving the discrete Poisson equation arising from a velocity update; and an automatic time step routine is used for calculating the time step at every cycle. A program implementing these features has been interfaced with a solid modelling routine defining the flow domain. A user-friendly input data file is employed to allow almost any arbitrary three-dimensional shape to be described. The visualization of the results is performed using computer graphic structures such as phong shade, flat and parallel surfaces. Results demonstrating the applicability of this new technique for solving complex free surface flows, such as cavity filling and jet buckling, are presented.