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This article examines static solutions to the smectic C continuum equa-

tions of Leslie et al.
1 for a variety of layer geometries. In particular it is

shown that valid molecular configurations exist for cylindrical, spherical

and toroidal layers. Suitable parameterizations are introduced for each

surface and the Euler-Lagrange balance equations are solved in a suit-

able coordinate system. Plots of the surfaces are presented, and their

relationship to singularities in the solutions are discussed.
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INTRODUCTION

The isothermal smectic C continuum theory proposed by Leslie et

al.1 has proved useful for mathematical analyses of both static and

dynamic problems in a number of different geometries.2–7 The theory

is based on two simple assumptions; the smectic layers, although

deformed, remain of constant thickness, and also the angle of tilt

of the alignment with respect to the layer normal remains fixed. A

serious test for any such static theory of smectics is that it must

predict layers forming complex surfaces such as Dupin or parabolic

cyclides.8,9 Static solutions for such layered structures have been

verified using the static theory,2,4 although these solutions are often

restricted by constraints on the elastic constants of the materials.

Although mentioned in previous articles, no solutions have been

detailed for cylindrical, spherical or toroidal layers. The aim of this

article is to present two valid molecular configurations for each of
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these types of layering. In each case we will outline the method of

solution and discuss any problems which arise due to singularities

or line defects. Cecil10 and Stewart et al.11 discuss the mathemat-

ical relationship between the Dupin and parabolic cyclides and the

geometries examined here. However it is worth noting that the pa-

rameterization of a torus may be derived from that of a Dupin cyclide

if the eccentricity of the underlying focal domain reduces to zero.

In the following Sections we introduce the smectic C continuum

theory of Leslie et al.1 In particular we discuss the Euler-Lagrange

static equilibrium equations and the associated Lagrange multipli-

ers. We examine solutions for, respectively, cylindrical, spherical

and toroidal layered structures; in each case we introduce a suit-

able parameterization for the surfaces before examining two proposed

molecular configurations.

SMECTIC CONTINUUM THEORY

Liquid crystals are elongated molecules for which the long molecular

axes locally adopt one common direction in space, usually described

by a unit vector n , known as the director. Smectic C liquid crys-

tals are layered structures where the director makes an angle θ with

respect to the layer normal. The smectic structure can be described

via a pair of orthogonal unit vectors a and c . Vector a is the den-

sity wave vector which also coincides with the smectic layer normal

due to the constant thickness assumption. Away from dislocations

we must have12

∇× a = 0 . (1)

The unit vector c is the unit orthogonal projection of n onto the

smectic planes. Thus c is always tangential to the smectic layers. It

follows that the directors a and c must be subject to the constraints

a · a = c · c = 1, a · c = 0. (2)

A bulk energy for the sample, W , can be constructed based on
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a , c and their gradients:

2W = K1(∇ · a )2 +K2(∇ · c )2 +K3(a · ∇ × c )2

+ K4(c · ∇ × c )2 +K5(b · ∇ × c )2

+ 2K6(∇ · a )(b · ∇ × c )

+ 2K7(a · ∇ × c )(c · ∇ × c )

+ 2K8(∇ · c )(b · ∇ × c ) + 2K9(∇ · a )(∇ · c ),

(3)

where the Ki’s are elastic constants and unit vector b = a ×c . The

relationship between these elastic constants and those of the Orsay

Group13 is described in Leslie et al.14

In the absence of body forces the Euler-Lagrange static equilib-

rium equations are1

Πa + γa + µc + ∇× β = 0, (4)

Πc + τc + µa = 0, (5)

where γ, µ, τ and β are Lagrange multipliers which arise from the

four constraints (1) and (2). The director body forces, Πa and Πc ,

may be written in vector form

Πa = K1∇(∇ · a ) −K3(a · ∇ × c )(∇× c )

− K5(b · ∇ × a )(c ×∇× c )

+ K6 {∇(b · ∇ × c ) − (∇ · a )(c ×∇× c ) }
− K7(c · ∇ × c )(∇× c )

− K8(∇ · c )(c ×∇× c ) +K9∇(∇ · c ),

(6)

Πc = K2∇(∇ · c ) −K3∇× {(a · ∇ × c )a }
− K4 [ (c · ∇ × c )(∇× c ) + ∇× {(c · ∇×)c } ]

+ K5 [ (b · ∇ × c )(a ×∇× c ) −∇× {(b · ∇ × c )b } ]

+ K6 [ (∇ · a )(a ×∇× c ) −∇× {(∇ · a )b } ]

− K7 [ (a · ∇ × c )(∇× c ) + ∇× {(c · ∇ × c )a }
+ ∇× {(a · ∇ × c )c } ] +K8 [ (∇ · c )(a ×∇× c )

−∇× {(∇ · c )b } + ∇(b · ∇ × c ) ] +K9∇(∇ · a ).

(7)

Employing (4) and (5), we can calculate the Lagrange multipliers µ

and τ via appropriate scalar products using (2) as

µ = −Πc · a , τ = −Πc · c . (8)
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In the following sections we will propose solutions to (4), (5) for a

variety of layer geometries. From (5), for any solution to exist it

must automatically satisfy

Πc · b = 0. (9)

Decomposing the director body force Πa into components

Πa = Πa
1 a + Πa

2 b + Πa
3 c ,

we can rewrite (4),

(Πa
1 + γ) a + Πa

2 b + (Πa
3 − Πc · a ) c + ∇× β = 0 . (10)

If we set γ = −Πa
1 + γ̂ and define K = Πa

3−Πc ·a , we may re-express

(10) in the form

γ̂ a + Πa
2 b + K c + ∇× β = 0 . (11)

In the analyses which follow, we introduce curvilinear coordinates

suitable for each geometry. In general, when transforming from the

x = (x, y, z) system to the u = (u, v, w) system we must determine

the metric tensor

gij =
∂xk

∂ui

∂xk

∂uj

.

The transformations we consider are orthogonal, therefore gij = 0

for i 6= j in each case. However the scaling factors

L =
√
g11, M =

√
g22, N =

√
g33 (12)

are required for the calculation of Πa and Πc in terms of the new

coordinates.

We introduce proposed molecular configurations which satisfy

constraints (1) and (2), then calculate the corresponding Πa , Πc .

To ensure that our solutions are valid we require to find the Lagrange

multipliers via (8) and (11), in particular γ and β . The former is

calculated by taking the divergence of (11), eliminating β in the

process. Finally, (11) is integrated in order to solve for β . In each

case we need to ensure that the multipliers are free from singularities

on the smectic layer, except possibly on line defects associated with

the layer.
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FIGURE 1. Description of coordinate systems for
(a) cylindrical and (b) spherical layers

CYLINDRICAL LAYERING

The cartesian equation for the cylinder in Figure 1(a) is

x2 + y2 = r2, z ∈ R, (13)

for cylindrical radius r. Varying r provides a family of concentric infi-

nite cylinders sharing a common centre axis, equidistant if r changes

by the same amount, e.g. r = 1, 2, 3,. . . , etc. We can fully describe

this series of cylinders by parameterizing (13),

x = r cosψ, y = r sinψ, z = z, (14)

where

r > 0, 0 ≤ ψ ≤ 2π, z ∈ R.

In the following analysis, vectors are expressed in terms of the (r, ψ, z)

coordinate system. The scaling factors for this transformation are

straightforward, L = N = 1, M = r. Also, the normal to any

cylindrical surface is given by grad r = (1, 0, 0).

Solution a = (1, 0, 0), c = (0, 0, 1), b = (0, −1, 0)

In this molecular configuration the projection director c is in the

direction of the cylindrical axis. Following the notation introduced
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previously it can be shown that

Πa = −K1

r2
a , Πc = −K9

r2
a .

Subsequently it is straightforward to derive the four Euler-Lagrange

multipliers,

µ =
K9

r2
, τ = 0, γ =

K1

r2
, β = K9

ln r

r
b .

(Singularities at r = 0 may be ignored as they coincide with the

central axis of the cylinder.) Therefore we have shown that our

solution satisfies the balance equations and constraints (1)–(5).

Solution a = (1, 0, 0), c = (0, 1, 0), b = (0, 0, 1)

We now consider the case where the c director lies in the polar di-

rection round the circumference of the cylinder. In a similar manner

to the previous configuration, we can obtain the following:

Πa = −(K1 −K3 +K5 + 2K6)
1

r2
a +K7

1

r2
c ,

Πc = (K7 −K8 −K9)
1

r2
a + (K4 − 2K5 − 2K6)

1

r2
c ,

τ = (−K4 + 2K5 + 2K6)
1

r2
, µ = ( −K7 +K8 +K9)

1

r2
,

γ = (K1 −K3 +K5 + 2K6)
1

r2
, β = −(K8 +K9)

r
b .

Once again we have derived suitable multipliers, verifying that the

molecular configuration proposed is valid for cylindrical smectic lay-

ering.

SPHERICAL LAYERING

A family of concentric spheres, see Figure 1(b), can be described via

the parameterization

x = r sinψ cosφ, y = r sinψ sinφ, z = r cosψ, (15)
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(0,  1,  0)
(0,  0,  1)=c

=c

FIGURE 2. Molecule configuration for spherical geometry.
Arrows indicate direction of c in either the ψ-direction,
c = (0, 1, 0), or in the φ-direction, c = (0, 0, 1)

where r > 0, 0 ≤ ψ, φ ≤ 2π. The scaling factors for the transfor-

mation to the (r, ψ, φ) system are given by

L = 1, M = r, N = r sinψ,

while the outward normal to any surface is again a = grad r =

(1, 0, 0).

Although Leslie et al.1 state that static solutions can be found

for a spherical layering, ignoring singularities, no details of the cal-

culations are specified. Here we provide details of the calculations

for two possible molecular configurations.

Solution a = (1, 0, 0), c = (0, 1, 0), b = (0, 0, 1)

For this choice of c director the configuration of the molecules in the

spherical geometry is shown in Figure 2. Following some analysis we

can show that the director forces Πa and Πc have no b -components,
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i.e. constraint (9) is satisfied. Employing the solution procedure out-

lined previously, we can derive multipliers,

τ = K2

1

r2 sin2 ψ
− (2K4 − 2K5 − 4K6)

1

r2
+ 2(K8 −K7)

1

r2 tanψ
,

µ = (K2 +K3)
1

r2 tanψ
− (2K7 −K8 − 2K9)

1

r2
,

γ = (2K1 −K3 +K5 + 3K6)
1

r2

− (K7 −K8 −K9)
1

r2 tanψ
+

ln r

r2 sinψ

d

dψ

(

sinψ F (ψ)
)

,

β = − ln r

r
F (ψ)b ,

where

F (ψ) = (−K7 +K8 +K9)
1

sin2 ψ
+ (K7 −K8)

1

tan2 ψ

+ (K7 −K8 − 2K9) − (K2 +K5 + 2K6)
1

tanψ
.

As expected these multipliers exhibit singularities on the line defect

corresponding to ψ = 0 where the molecules converge at the top and

bottom of the sphere. However the configuration under consideration

will satisfy the balance equations on the remainder of any uniaxial

spherical layering.

Solution a = (1, 0, 0), c = (0, 0, 1), b = (0, −1, 0)

For this second configuration the molecular orientation is also shown

in Figure 2 with the c director pointing in the polar φ-direction. In

this case the director forces correspond to

Πa = −(2K1 −K3 +K5 + 3K6)
1

r2
a +K7

1

r2 sin2 ψ
c

− (K3 −K5 − 2K6)
1

r2 tanψ
b ,
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Πc = (2K7 −K8 − 2K9)
1

r2
a − (2K3 −K4)

1

r2 sin2 ψ
c

+ 2(K3 −K5 − 2K6)
1

r2
c −K7

1

r2 tanψ
b .

Immediately we can deduce that Πc does not satisfy criteria (9) for

a solution to exist for all nine terms in the energy. The configuration

we consider will satisfy the balance equations only for a material for

which the elastic constant K7 ≡ 0. For example, materials which

exhibit the smectic CM phase (see Brand and Pleiner15) have a six

term energy given by the first six terms in (3). With this constraint

we can assign Lagrange multipliers which allow us to satisfy the

balance equations:

τ = (2K3 −K4)
1

r2 sin2 ψ
− 2(K3 −K5 − 2K6)

1

r2
,

µ = (K8 + 2K9)
1

r2
,

γ = (2K1 −K3 +K5 + 3K6)
1

r2
+ (K3 −K5 − 2K6)

ln r

r2
,

β = (K8 + 2K9)
ln r

r
b + (K3 −K5 − 2K6)

ln r

r tanψ
c .

Once again the equilibrium solution is valid everywhere, except on

the line defect ψ = 0 (i.e. points where x = y = 0).

TOROIDAL LAYERING

A torus is the limiting example of the Dupin (or hyperbolic) cyclide,

a taut, compact, two-dimensional surface (see Leslie et al.4 and ref-

erences therein). These surfaces can be layered over each other to

form parallel equidistant layered structures. Previously, Nakagawa2

and Leslie et al.1 examined one possible static solution of the smectic

equations for a Dupin cyclide, subject to certain constraints on the

elastic constants. Although they show that it may be possible to find

a solution, they do not calculate the individual Lagrange multipliers.
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FIGURE 3. Geometrical representation of toroidal surface

In particular they do not consider the intricacies involved in guar-

anteeing that the multipliers are defined on the whole cyclide. Here

we parallel the cyclide solution of Nakagawa,2 reducing it to that

of a torus, and introduce another possible configuration not previ-

ously discussed. In both cases we outline the problems involved in

obtaining valid multipliers, in particular γ and β , and discuss any

restrictions necessary on the elastic constants.

The torus shown in Figure 3 may be described via

ρ2 = (r − a)2 + z2, x2 + y2 = r2, (16)

where a is the internal radius of the torus and ρ is the outer radius

as indicated. A family of layered tori may be constructed by varying

ρ for fixed a. The toroidal surface can now be parameterized,

x = (a+ ρ cos φ) cosψ, y = (a + ρ cosφ) sinψ, z = ρ sinφ,

(17)

where

r(ρ, φ) = a + ρ cosφ, 0 < ρ < a, 0 ≤ ψ, φ ≤ 2π.

Here ψ is the internal polar angle while φ is the external polar angle.

In the calculations which follow we utilize the orthogonal (ρ, ψ, φ)

coordinate system. The scaling factors for this system are L = 1,

M = r, N = ρ. The parameterization (17) is equivalent to the reduc-

tion of Forsyth’s16 representation of the Dupin cyclide. Nakagawa2
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c= (0,  0,  1)

c = (0,  1,  0)

FIGURE 4. Molecule configuration when c -director points
in the ψ-direction, c = (0, 1, 0), or in the φ-direction, c =
(0, 0, 1).

employs a different parameterization of the cyclide which describes

only the inner portion of the surface. We shall see later that this ap-

proach omits points on the torus which have an important bearing

on the validity of solutions.

Solution a = (1, 0, 0), c = (0, 1, 0), b = (0, 0, 1)

In this configuration the molecules are aligned in the polar ψ-direction

as shown in Figure 4; this is analagous to the Dupin cyclide solution

discussed in Nakagawa.2 For this setup we can show that

Πa = K1

{

2r(a− r) − a2

r2 ρ2
a − a sinφ

ρr2
b

}

+ (K3 −K5)
cosφ

r

(

cosφ

r
a − sinφ

r
b

)

+K7

1

r2
c

+ K6

{

−cos φ(3ρ cosφ+ a)

r2ρ
a − 2 sinφ cosφ

r2
b

}

,
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Πc = (K4 − 2K3)
1

r2
c + 2(K3 −K5)

(

cosφ

r

)2

c −K7

sinφ

rρ
b

+ K7

cosφ

rρ
a + (K7 −K8)

cos2 φ

r2
a +K9

2r(a− r) − a2

r2ρ2
a

+ 2K6

(a− 2r) cosφ

r2ρ
c + (K7 −K8 −K9)

a sinφ

r2ρ
b .

From (9), for our solution to exist we must restrict our elastic con-

stants such that K7 = 0 and K8 + K9 = 0. This coincides with

the restriction of Nakagwa2 for the Dupin cyclide. With these con-

straints, we may proceed to determine the multipliers

τ = (2K3 −K4)
1

r2
+ 2(K5 −K3)

cos2 φ

r2
+ 2K6

(2r − a) cosφ

ρr2
,

µ =
K9

ρ2
,

γ = K1

[a2 − 2r(a− r)]

r2ρ2
− (K3 −K5 −K6)

cos2 φ

r2

+ K6

(2r − a) cosφ

r2ρ
+ γ̂,

where γ̂ and β must satisfy

curl β + γ̂a = (K1 −K3 +K5 + 2K6)
a sinφ

r2ρ
b

− K9

1

ρ2
c + (K3 −K5 − 2K6)

sinφ

rρ
b .

(18)

Both γ̂ and β must be chosen carefully to ensure that they are

defined on the whole torus, excluding possibly the central axis defect

corresponding to r = 0. Initially we take the divergence of (18) to

remove curl β . The resulting equation is integrated to calculate γ̂;

however the appropriate arbitrary functions of integration must be

chosen to remove any possible singularities, in particular when φ = π
2

or 3π
2

. It is straightforward to verify that the following multipliers

satisfy (18) and are free from singularities other than r = 0,

γ̂ = (K1 −K3 +K5 + 2K6)

[

sin2 φ

r2
+

cosφ

rρ
ln
ρ

r

]
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+ (K3 −K5 − 2K6)
cosφ

rρ
ln ρ,

β = K9

ln ρ

ρ
b +

{

(K1 −K3 +K5 + 2K6)
sin φ

r
ln

(ρ

r

)

+ (K3 −K5 − 2K6)
sinφ

r
ln ρ

}

c .

Therefore, when the molecules are aligned in the specified direction,

we are able to find a solution to the balance equations subject to the

constraints on the elastic constants of the material.

Solution a = (1, 0, 0), c = (0, 0, 1), b = (0, −1, 0)

In this final example, not previously discussed, the molecules tra-

verse the torus as indicated in Figure 4. Substituting the proposed

configuration into (6) and (7), we derive the following multipliers

(details of the balance forces, which have no b -components, have

been omitted),

τ = K2

1

ρ2r2
(a(r − a) + ρ2) +K4

a− 2r

rρ2
+K5

2

ρ2
+K6

2(2r − a)

rρ2

+ (K7 −K8)
2 sinφ

rρ
+K9

a sinφ

ρr2
,

µ = −K2

sin φ cosφ

r2
−K3

sinφ

rρ
−K7

(2r − a)

rρ2
+K8

1

ρ2

+K9

(

a2 − 2r(a− r)

r2ρ2

)

,

γ = −K1

(

2r(a− r) − a2

r2ρ2

)

+ (K5 −K3)
1

ρ2
+K6

(

1

ρ2
+

2r − a

rρ2

)

+ (K7 −K8)
sin φ

rρ
−K9

sinφ cosφ

r2
+ γ̂.

The resulting balance equation for the smectic sample may now be

rewritten as

curl β+γ̂a =

{

A1

a sin φ

r2ρ
+ A2

sinφ

rρ
+ A3

a

rρ2
+K9

1 − 2 cos2 φ

r2

}

c ,
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where

A1 = K1 −K2, A2 = K2 +K5 + 2K6, A3 = −K8 −K9.

Following the procedure outlined previously, we can evaluate multi-

pliers γ̂ and β ,

γ̂(ρ, φ) = A1

(

cosφ

rρ
ln

(ρ

r

)

+
sin2 φ

r2

)

+ A2

cosφ

rρ
ln ρ

+K9

sinφ

r2ρ cos2 φ

(

(1 + 2 cos2 φ)r ln r + a(1 − 2 cos2 φ)
)

,

β =

[

−A1

sinφ

r
ln

(ρ

r

)

− A2

sin φ

r
ln ρ+ A3

a

rρ

+ K9

(1 − 2 cos2 φ

r cosφ
ln r +

1 + cos2 φ

cos φ

)

]

b .

There remains a problem with the K9 term in γ̂ and β ; in both cases

the multipliers diverge as φ approaches π
2

or 3π
2

. These singularities

correspond to circles at the extreme top and bottom of the toroidal

surface. (These lines may be denoted alternatively as r ≡ a.) It is

not possible to remove these singularities when calculating γ̂ and β ;

therefore the proposed solution to the balance equations exists only

for a material for which K9 ≡ 0. Alternatively the configuration

is valid for a full nine term bulk energy for a partial torus surface.

Leslie et al.3 encounter a similar problem in their study of smectic

solutions for the parabolic cyclide and therefore restrict their atten-

tion to the six term energy of smectic CM or anti-ferroelectric smectic

phases.

Note that the parameterization of Nakagawa2 describes only the

inner portion of the torus. It can be easily adapted to parameterize

the outer section of the surface. However, unlike the reduction of

Forsyth’s16 Dupin cyclide parameterization, the description in Naka-

gawa2 always excludes the circles corresponding to φ = π
2
, 3π

2
, and as

a result does not consider the problems associated with calculating

the multipliers on these lines.
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