Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The structured sensitivity of Vandermonde-like systems

Bartels, S.G. and Higham, D.J. (1992) The structured sensitivity of Vandermonde-like systems. Numerische Mathematik, 62. pp. 17-33. ISSN 0029-599X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider a general class of structured matrices that includes (possibly confluent) Vandermonde and Vandermonde-like matrices. Here the entries in the matrix depend nonlinearly upon a vector of parameters. We define, condition numbers that measure the componentwise sensitivity of the associated primal and dual solutions to small componentwise perturbations in the parameters and in the right-hand side. Convenient expressions are derived for the infinity norm based condition numbers, and order-of-magnitude estimates are given for condition numbers defined in terms of a general vector norm. We then discuss the computation of the corresponding backward errors. After linearising the constraints, we derive an exact expression for the infinity norm dual backward error and show that the corresponding primal backward error is given by the minimum infinity-norm solution of an underdetermined linear system. Exact componentwise condition numbers are also derived for matrix inversion and the least squares problem, and the linearised least squares backward error is characterised.