Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

An incremental algorithm for fast optimisation of multiple gravity assist trajectories

Ceriotti, M. and Vasile, M. and Bombardelli, Claudio (2007) An incremental algorithm for fast optimisation of multiple gravity assist trajectories. In: 58th International Astronautical Congress, 2007-09-24 - 2007-09-28.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Multiple gravity assist (MGA) trajectories are essential to reach high gravity targets with low propellant consumption. In mathematical terms, the problem of finding a good first guess solution for the design of a MGA trajectory can be seen as a global optimisation problem. The dimension of the search space, and of the possible alternative solutions, increases exponentially with the number of swing-bys, and the problem is even more complex if deep space manoeuvres are considered. This makes the search for a globally optimal transfer quite difficult. The proposed approach aims at decomposing the main problem into smaller sub-problems, solved incrementally. In fact, starting from the departure planet and flying to the first swing-by planet, only a limited set of transfers are feasible, for example with respect to the maximum achievable. Therefore, when a second leg is added to the trajectory, only the feasible set for the first leg is considered and the search space is reduced. The process iterates by adding one leg at a time and pruning the unfeasible portion of the solution space. The algorithm has been applied to two test cases - an E-E-M transfer and an E-E-V-V-Me transfer - to investigate the efficiency of the exploration of each sub-problem, and the reliability of the space pruning. A comparison to the direct global optimisation of the whole trajectory is shown.