Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Automatic MGA trajectory planning with a modified ant colony optimization algorithm

Ceriotti, M. and Vasile, M. (2009) Automatic MGA trajectory planning with a modified ant colony optimization algorithm. In: 21st International Space Flight Dynamics Symposium, ISSFD 2009, 2009-09-28 - 2009-10-02.

[img]
Preview
PDF
Ceriotti_M_strathprints_Automatic_MGA_trajectory_planning_with_a_modified_Ant_Colony_Optimization_algorithm.pdf - Preprint

Download (378kB) | Preview

Abstract

This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness.