Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Automatic MGA trajectory planning with a modified ant colony optimization algorithm

Ceriotti, M. and Vasile, M. (2009) Automatic MGA trajectory planning with a modified ant colony optimization algorithm. In: 21st International Space Flight Dynamics Symposium, ISSFD 2009, 2009-09-28 - 2009-10-02, Toulouse, France.

[img]
Preview
PDF
Ceriotti_M_strathprints_Automatic_MGA_trajectory_planning_with_a_modified_Ant_Colony_Optimization_algorithm.pdf - Draft Version

Download (378kB) | Preview

Abstract

This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness.

Item type: Conference or Workshop Item (Paper)
ID code: 20162
Keywords: multiple gravity assist, trajectories, ant colony optimisation algorithm, optimal transfers, optimal solutions, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics, Aerospace Engineering, Computational Mechanics, Control and Systems Engineering
Subjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. Astronautics
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Depositing user: Ms Katrina May
Date Deposited: 01 Jun 2010 15:01
Last modified: 22 May 2015 09:39
Related URLs:
URI: http://strathprints.strath.ac.uk/id/eprint/20162

Actions (login required)

View Item View Item