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Search Space Pruning and Global Optimization of Multiple Gravity
Assist Trajectories with Deep Space Manoeuvres

V.M. Becerra, S.J. Nasuto, J. Anderson, M. Ceriotti and C. Bombardelli

Abstract— This paper deals with the design of optimal mul-
tiple gravity assist trajectories with deep space manoeuvres.
A pruning method which considers the sequential nature of
the problem is presented. The method locates feasible vectors
using local optimization and applies a clustering algorithm to
find reduced bounding boxes which can be used in a subsequent
optimization step. Since multiple local minima remain within
the pruned search space, the use of a global optimization
method, such as Differential Evolution, is suggested for finding
solutions which are likely to be close to the global optimum.
Two case studies are presented.

I. INTRODUCTION

A gravity assist manoeuvre uses a celestial object’s gravity
in order to change a spacecraft’s trajectory. When a space-
craft approaches a celestial object, a small amount of the
object’s orbital momentum is transferred to the spacecraft.
This manoeuvre was used for the first time in the 1970’s,
when the spacecraft Mariner 10 used a gravity assist fly-
bys of Venus to reach Mercury. Gravity assist manoeuvres
(GAs) are frequently used to reduce fuel requirements. Most
interplanetary trajectory design problems can be stated as
optimization problems, where one of the fundamental goals
is the minimization of fuel requirements, with consideration
also given to intermediate planetary flybys, mission duration,
type of arrival, launch and arrival windows, and velocity
constraints. Traditionally, local optimization has been used
to attempt to solve these design problems [1]. However,
because of nonlinearities and the periodic motion of the
planets, multiple local minima exist and, as a result, local
optimization only helps to find local minima which are
heavily dependent on the initial guesses employed and are not
necessarily good solutions. The use of global optimization
techniques has been proposed for tackling these problems, as
these methods have a better chance of finding good solutions
approaching the global optimum [2]. Genetic algorithms and
similar techniques have been employed, but these techniques
may face difficulties in tackling realistic missions due to
the large size of the search space associated with these
problems. A method known as GASP (Gravity Assist Space
Pruning) has been proposed [3] in relation with problem
of multiple gravity assist (MGA) trajectories with a known
planetary sequence and no deep space manoeuvres. In such
cases, it can be shown that the vast majority of the search

V.M. Becerra, S.J. Nasuto and J. Anderson are with the School of Systems
Engineering, University of Reading, UK, (phone: +44-118-3786703 fax:
+44-118-3788220; email: v.m.becerra@reading.ac.uk). M. Ceriotti is with
the Department of Aerospace Engineering, University of Glasgow, UK. C.
Bombardelli is with the Advanced Concepts Team, European Space Agency,
Noordwijk, the Netherlands

space consists of infeasible, or very undesirable, solutions.
This observation motivated the development of a method for
producing reduced search spaces by pruning, thus allowing
standard global optimization techniques to be applied more
successfully to the reduced box bounds. The GASP method
considers the sequential nature of the problem, as it prunes
the search space on a phase by phase basis, and results in
important computational savings, with search space reduc-
tions greater than six orders of magnitude, thus simplifying
significantly the subsequent optimization. The method is
based on grid sampling in two dimensions for each leg of
the mission, with sequential pruning of the search space. The
pruning method has been shown to have polynomial time and
space complexity, so that it remains tractable as the number
of decision variables increases. However, designing multiple
gravity assist missions with no deep-space manoeuvres is
limited in scope, since many possible trajectories cannot
be considered, and, as practice shows, deep space manoeu-
vres are used in real missions. If the problem of multiple
gravity assist with deep space manoeuvres could be pruned
efficiently, then the computational cost of optimizing such
trajectories may be significantly reduced. The introduction
of deep space manoeuvres offers the further advantage of
providing a reasonable approximation of multiple gravity
assist trajectories with low-thrust arcs. If a transfer arc is no
more simply ballistic but is shaped by one or more propelled
manoeuvres (either impulsive or low-thrust) the number of
degrees of freedom increases significantly. Hence, an efficient
solution process would have to make use of additional
information to reduce the number of possible alternatives
(pruning the search space) so reducing the computational
cost, and increasing the likelihood of finding good solutions.

This paper describes a method for pruning of the search
space of multiple gravity assist optimization problems with
deep space manoeuvres, for the particular case of powered
swingbys. The method can be seen as an extension of the
GASP method when deep space manoeuvres are considered.
Since the pruned problem would still exhibit multiple local
minima, the use of a global optimization method to find
optimal solutions on the pruned space is proposed.

II. GENERAL PROBLEM FORMULATION

The problem of interest may be formulated as a multi-stage
optimization problem (MSOP).
MSOP: Find

x =
[

xT
1 , xT

1 , · · · , xT
s+1

]T ∈ Ω



to minimise
f(x, z1, . . . , zs+1)

subject to

zk = hk(x1, . . . ,xk+1), k = 1, . . . , s

gk(zk) ≤ 0, k = 1, . . . , s + 1

Ω is the Cartesian product of s+1 hyper-rectangles Ω = Ω1×
Ω1 × · · · × Ωs+1, where Ωk = {xk ∈ Rnk |x(k)

L ≤ xk ≤
x(k)

U }, k = 1 . . . , s + 1, the objective function is assumed
to be scalar f : Ω × Rq1 × · · · × Rqs+1 → R, the vectors
zk ∈ Rqk , k=1,. . . ,s+1, are intermediate variables associated
with each stage, and each of the functions hk : Ω1 × Ω2 ×
· · · × Ωk+1 → Rmk and gk : Rqk → Rdk is associated with a
particular stage k. Note that the calculation of the constraint
function gk depends on intermediate variables calculated at
stage k, and the objective function depends on the values of
the intermediate variables zk, k=1,. . . , s+1, hence a specific
order must be followed to evaluate the objective function f
and the constraint functions gk.

The presence of inequality constraints in the MSOP re-
quires careful consideration. Although bounds on the deci-
sion variables are easy to manage, more general inequality
constraints are more difficult to handle in global optimiza-
tion. A plausible method is to prune the search space
based on feasibility (i.e. constraint satisfaction). This has an
important benefit: the size of the search space is reduced
hence simplifying the optimization task. One simple method
of pruning is to grid sample the search space with a suitable
resolution so that unfeasible areas can be detected by evalu-
ating the constraint functions, and subsequently eliminated,
leaving a reduced search space where optimisation can be
applied. However, the cost of grid sampling with reasonable
resolutions may be prohibitive when the search space dimen-
sion is larger than two or three.

The mission considered by the GASP method includes
powered gravity assist at intermediate planets, and if required
a braking manoeuvre at the arrival planet for orbit insertion.
The problem addressed by GASP can be cast as a MSOP.
Here, the decision vector x consists of the launch date and
transfer times between planets, the intermediate variables zk

are the ∆v’s applied at each planet. The functions hk repre-
sent the calculations that are required to find the intermediate
variables (solution of Lambert problems, swing-by models),
the objective function is the sum of the magnitudes of the
∆v’s. The constraint functions gk are related to upper bounds
on the ∆v’s at each planet (as thrusters have limits), as well
as lower bounds for the periapsis radius at each swing-by
planet (to keep a safe distance from the planet).

III. MODELLING A MISSION LEG WITH DEEP SPACE

MANOEUVRES

We have used a model that is able to compute the trajectory
from one planet to the next planet in a mission, with an ar-
bitrary number of intermediate deep space manoeuvres. The
model requires specifying the initial and final positions of
the spacecraft, the time of flight Tof between the planets, and

the positions and the timing of all deep space manoeuvres
involved, and it returns the velocity vectors at the begining
and at the end of the leg, together with the magnitudes of
the deep space impulsive manoeuvres.

With reference to Figure 1, the initial position of the
spacecraft, rp1 can be found by an ephemeris calculation
related to the initial planet given the departure date t0.
Similarly, the final position of the spacecraft rp2 can be
found by an ephemeris calculation related to the next planet,
given the arrival time tarr, which can be calculated as tarr =
t0 + Tof .

Fig. 1. Mission leg model with a deep space manoeuvre

Each deep space manoeuvre is characterized in polar co-
ordinates with the following parameters:

• r: dimensionless distance from the sun. The vector from
the sun to the deep space manoeuvre is denoted as
rDSM. The value r is equal to zero when |rDSM| is
equal to |rp1|, and r is equal to 1 when |rDSM| is equal
to |rp2|. Notice that r may be outside the interval [0,1]
when the orbits of the planets are eccentric.

• θ: in-plane angle (angle between rp1 and the projection
of rDSM on the orbital plane of the first planet). This
projection is denoted as r′DSM in Figure 1.

• φ: out of plane angle (angle between rDSM and the
projection of rDSM on the orbital plane of the first
planet)

In addition, the timing of the deep space manoeuvre
is parameterized as a fraction α ∈ [0, 1] of the time of
flight, such that the timing of the deep space manoeuvre is
expressed as α × Tof .

In the model, a patched conic, two-body problem is
considered. The manoeuvres are assumed to be impulsive. In
case of a single deep space manoeuvre, then the leg trajectory
is found through the solution of two Lambert problems. We
used an implementation of Battin’s method for the Lambert
solution. See [4], [5] for further details on the algorithms
involved.

Notice that in case of a mission with multiple phases, any
two consecutive deep space flight phases can be computed
independently, without considering the swingby of the planet.
This is due to the fact that the initial velocity is not
needed to compute the Lambert arc. Rather, the initial and



final velocities are outputs from the Lambert solver. Once
two consecutive legs are computed, both the incoming and
outgoing velocity at the planet become available and the
swingby (with the powered model) can be computed.

In this way, in order to create the whole trajectory, the
only requirement is that the time at each planet is the same
for all the phases arriving or departing from that planet. At
this point, no constraints are considered on the incoming and
outgoing velocities. Thus, it is possible to analyze (optimize,
prune) the deep space flight phases first, then match them
with the swingbys and prune again on the basis of the
feasibility of the swingby.

This approach is not possible with a model of swingby
which in some way computes the outgoing velocity, because
in this case, it would be necessary to match both time and
velocity in order to combine deep space flight phases with
swingby phases.

IV. MODELLING A POWERED SWINGBY

The gravity assist calculations consist of matching the
incoming and outgoing planetocentric velocities around the
swingby planet, and computing a minimum passing distance,
which is also known as the pericenter radius. If the pericenter
radius is unacceptably low, it is possible to calculate a
suitable velocity impulse to be applied to achieve a minimum
desired altitude. When the manoeuvre requires such an
impulse, it is known as powered swingby. A gravity assist
manoeuvre is illustrated in Figure 2.
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Fig. 2. Illustration of a gravity assist manoeuvre

The gravity assist model takes the planetocentric incoming
and outgoing velocities, the minimum pericenter radius, and
the gravitational constant of the planet, and returns the
required impulsive ∆v [4].

V. THE GASP ALGORITHM WITH POWERED SWINGBYS

AND DEEP SPACE MANOEUVRES

Inspired by the original GASP algorithm, its extension
considering deep space manoeuvres and powered swingbys
described in this section, also prunes the search space con-
sidering each phase of the mission in a sequential manner.
The introduction of a deep space manoeuvres increases
significantly the number of decision variables.

In order to keep the description of the method simple, we
consider a two phase mission with one deep space manoeuvre
at each phase, and one gravity assist manoeuvre. We also
assume that a braking manoeuvre is performed for orbit
insertion purposes at the arrival planet [6]. The method can
be extended to more phases and more deep space manoeuvres
per phase in a straightforward manner.

The notation used below is as follows. The super-index in
parenthesis (e.g. (1), (2)). indicates the phase of the mission.
∆vdep is the impulsive manoeuvre at departure, ∆vDSM is
an impulsive manoeuvre at deep space, ∆vga is an impulsive
manoeuvre at a gravity assist planet, ∆vb is a braking
manoeuvre that is performed for orbit insertion purposes,
vin is the arrival velocity at a swingby planet, vout is the
departure velocity from a swingby planet, t0 is the mission
launch date, tarr is an arrival time at the end of one phase,
tdep is the departure time at the beginning of a phase, Tof is
the time of flight of a given phase.

A. First phase

The decision vector associated with this leg is as follows:

x1 = [t0, T
(1)
of , r(1), α(1), θ(1), φ(1)]T (1)

In contrast to the original GASP algorithm, where there
are only two decision variables (t0, T

(1)
of ) associated with

the first leg, there are now six decision variables associated
with the first leg. The threefold increase in the number of
decision variables makes it too expensive to carry out a grid
sampling, as is shown in the first case study below.

Assume that x1 is initially limited to the hyper-rectangle
Ω1 ⊂ �6, such that each element of x1 is initially bounded
between lower and upper limits: xl

1,j ≤ x1,j ≤ xu
1,j , j =

1, . . . , 6.
We are interested in pruning the search space by finding an

estimate of the feasible regions of the search space associated
with the first leg, with respect to constraints on the departure
impulse ∆v

(1)
dep, and the deep space manoeuvre impulse

∆v
(1)
DSM. To find such an estimate, we propose the use of

a local optimization algorithm, which can be started from
multiple random vectors within the admissible region Ω1, and
stopped when feasible vectors are found. This procedure is
then followed by the application of a clustering algorithm to
find an estimate of the region. We have used in this work the
mean shift clustering algorithm [7], which does not require
an a priori specification of the number of clusters. Thus the
algorithm to prune the search space associated with the first
phase is as follows:



Algorithm 1: Pruning the first phase:

1) Generate randomly N1 starting vectors within the
admissible region for the first phase: x̄i

1 ∈ Ω1 ⊂ �6,
i = 1, . . . , N1.

2) Start a constrained local optimization algorithm, such
as sequential quadratic programming, from each initial
vector x̄i

1, i = 1, . . . , N1 to solve the following
problem:

min
x1

f1(x1) = ∆v
(1)
dep + ∆v

(1)
DSM (2)

subject to [
∆v

(1)
dep

∆v
(1)
DSM

]
= h1(x1)

∆v
(1)
dep ≤ ∆vmax

dep

∆v
(1)
DSM ≤ ∆vmax

DSM

(3)

where ∆v
(1)
dep is the impulsive manoeuvre at launch,

∆v
(1)
DSM is the impulsive manoeuvre performed at deep

space during phase 1. Note that the constrained op-
timization algorithm may be stopped as soon as a
feasible vector satisfying the inequality constraints is
found. If a feasible vector is found, it is recorded as
x̂i

1. If no feasible vector is found starting from x̄i
1, then

the optimization starts again with the next value of i.
This step ends with a collection of feasible vectors x̂i

1

i = 1, . . . , M1, where M1 ≤ N1. If no feasible vectors
are found, the algorithm stops.

3) Given the set of feasible vector found in step 2, run
the clustering algorithm to find a set of P1 clusters, so
that each vector x̂i

1 is assigned to a cluster Cj , where
i = 1, . . . , M1 and j = 1, . . . , P1.

4) This step uses the information in the clusters to form
one bounding box for each cluster Cj , j = 1, . . . , P1.
Let xmin,j ∈ �6 be a vector so that each of its elements
xmin,j

i is the minimum i-th coordinate value for all
the vectors in cluster Cj . Similarly, let xmax,j ∈ �6

be a vector so that each of its elements xmax,j
i is the

maximum i-th coordinate value for all the vectors in
cluster Cj . Then the bounding box for cluster j is
defined as

B
(1)
j = {x ∈ Ω1 ⊂ �6| xmin,j ≤ x ≤ xmax,j}. (4)

Note that each B
(1)
j is a subset of Ω1, the original search

space for the decision variables associated with phase 1. The
set of bounding boxes B

(1)
j , j = 1, . . . , P1 represents the

initially pruned search space for phase 1 (this set is updated
later, in a backward constraining step). Denote B(1) as the
set of bounding boxes Bj , j = 1, . . . , P1.

B. Second phase

We are using the patched conic approach to model the
trajectory, so that the time of arrival at the end of the first
phase is identical to the time of departure for the second
phase. In other words, it is assumed that the gravity assist

manoeuvre occurs instantaneously. We have found reduced
bounding boxes B

(1)
j , j = 1, ...P1 for the decision variables

associated with phase 1.
Given values for the launch time t0 and the time of flight

for the first leg T
(1)
of , the time of arrival at the end of phase

1, which is equal to the time of departure for phase 2, is
given by:

t(1)arr = t
(2)
dep = t0 + T

(1)
of (5)

We have found in phase 1 a set of intervals of feasible
values for the arrival time t

(1)
arr. Such intervals are derived

from the first two co-ordinates of the bounding boxes for
phase 1, B

(1)
j , j = 1, . . . , P1. Since t

(1)
arr = t

(2)
dep then it

only makes sense to consider values of t
(2)
dep within the same

intervals. This was the main idea that was exploited in the
design of the original GASP method [3]. Let us denote the
feasible intervals for t

(2)
dep as Ij , j = 1, . . . , P1. Note that such

intervals may, in general, overlap. Denote I as the union of
all intervals Ij , j = 1, . . . , P1.

Given that we are assuming a powered swingby, the arrival
and departure velocities are decoupled (the departure velocity
does not depend on the arrival velocity, provided any bound
constraints on the ∆v magnitude are not hit), so we can
compute the second phase without having computed first
the powered swingby. Assume that the second phase also
involves a single deep space manoeuvre, so that the decision
vector for the second phase is:

x2 = [T (2)
of , r(2), α(2), θ(2), φ(2)]T (6)

where T
(2)
of represents the time of flight for the second leg,

and {r(2), α(2), θ(2), φ(2)} are parameters associated with the
deep space manoeuvre that takes place in the second phase.
Let us denote the initial admissible region for x2 as Ω2.

In order to compute the second phase, it is necessary to
specify values for t

(2)
dep and x2. Define an augmented vector

associated with the second phase as follows:

X(2) = [t(2)dep, xT
2 ]T ∈ �6 (7)

Let us define the admissible region for this vector as Ω̄2 =
I × Ω2.

We can formulate the pruning algorithm for the second
phase as follows.

Algorithm 2: Pruning the second phase:

1) Generate randomly N2 starting vectors within the ad-
missible region for the second phase: X̄i

2 ∈ Ω̄2 ⊂ �6,
i = 1, . . . , N2.

2) Start a constrained local optimization algorithm, such
as sequential quadratic programming, from each initial
vector X̄i

2, i = 1, . . . , N2 to solve the following
problem:

min
X2

f2(X2) = ∆v
(2)
DSM + ∆v

(2)
b (8)



subject to [
∆v

(2)
DSM

∆v
(2)
b

]
= h2(X2)

∆v
(2)
DSM ≤ ∆vmax

DSM

∆v
(2)
b ≤ ∆vmax

b

(9)

where ∆v
(2)
DSM is the deep space manoeuvre, and ∆v

(2)
b

is the braking manoeuvre at the final planet. Note that
the constrained optimization algorithm may be stopped
as soon as a feasible vector satisfying the inequality
constraint is found. If a feasible vector is found, it is
recorded as X̂i

2. If no feasible vector is found starting
from X̄i

2, then the optimization starts again with the
next value of i. This step ends with a collection of
feasible vectors X̂i

2 i = 1, . . . , M2, where M2 ≤ N2.
If no feasible vectors are found, the algorithm stops.

3) This step checks the feasibility of each of the vectors
found in Step 2 with respect to the gravity assist
manoeuvre. From each of the vectors found in Step
2, X̂i

2 i = 1, . . . , M2, extract the departure time t
(2,i)
dep ,

and take the corresponding departure velocity vector
v(2,i)
out (which is computed as part of the evaluation of

the second leg). Then, given values for t
(2,i)
dep , and v(2,i)

out ,
start a constrained local optimizer from N3 randomly
generated vectors xj

1 ∈ B(1), j = 1, . . . , N3, to solve
the following problem:

min
x1

f1(x1) = ∆v
(1)
dep + ∆v

(1)
DSM (10)

subject to

x1 ∈ B(1)
 ∆v

(1)
dep

∆v
(1)
DSM

v(1)
in


 = h̄1(x1)

∆v(1)
ga = q1(v

(1)
in , v(2,i)

out , r
(1)
min)

t0 + t
(1)
of − t

(2,i)
dep = 0

∆v
(1)
dep ≤ ∆vmax

dep

∆v
(1)
DSM ≤ ∆vmax

DSM

∆v(1)
ga ≤ ∆vmax

ga

(11)

where v(1)
in is the arrival velocity at the gravity assist

planet, ∆v
(1)
ga is the impulsive manoeuvre performed at

the gravity assist planet, r
(1)
min is the minimum allowed

pericenter altitude during the gravity assist manoeuvre.
If a feasible solution x̃1 is found out of the N3 local
optimizer runs, then x̃1 is stored, and the vector X̂i

2

is confirmed as feasible, otherwise X̂i
2 is discarded.

This results in Q2 ≤ M2 feasible vectors associated
with the second phase, and Q1 ≤ M1 feasible vectors
associated with the first phase.

4) Given the set of feasible vectors found in step 3, run
the clustering algorithm to find a set of P2 clusters,

so that each vector X̂i
2, is assigned to a cluster C

(2)
j ,

where i = 1, . . . , Q2 and j = 1, . . . , P2.
5) This step uses the information in the clusters found

in step 4 to form one bounding box for each cluster
C

(2)
j , j = 1, . . . , P (2). Let Xmin,j ∈ �6 be a vector

so that each of its elements Xmin,j
i is the minimum i-

th coordinate value for all the vectors in cluster C
(2)
j .

Similarly, let Xmax,j ∈ �6 be a vector so that each of
its elements Xmax,j

i is the maximum i-th coordinate
value for all the vectors in cluster C

(2)
j . Then the

bounding box for cluster j is defined as

B̄
(2)
j = {X ∈ Ω̄2 ⊂ �6|Xmin,j ≤ x ≤ Xmax,j}.

(12)

Note that the bounding boxes found in step 5 are associated
with the augmented variable X2 defined in equation (7).
It is straightforward to find the bounding boxes B

(2)
j that

correspond to the original variable vector x2. Denote the set
of such boxes as B(2).

C. Backward constraining

Given the set of feasible vectors x̃k
1 , k = 1, . . . , Q1, which

are found in Step 3 of Algorithm 2, it is possible to run
again the clustering algorithm and find, in a similar way as
done before, a new set of P̄1 bounding boxes B̄(1), j =
1, . . . , P̄1, for phase 1. This usually results in the shrinking
of the previously found set of boxes for phase 1, and possibly
in the elimination of some of them. Denote the new set of
bounding boxes for phase 1 as B̄(1), which represents the
final pruned search space for phase 1.

VI. GLOBAL OPTIMIZATION ON THE PRUNED SEARCH

SPACE

Note that, given the connection in time between the phases
(the time of arrival of the first phase is the same as the time
of departure of the second phase), it is normally possible
to associate each of the bounding boxes found in the initial
phase with one (or possibly more) bounding boxes associated
with the second stage. Each of these associations defines a
solution family. Suppose that box B̄

(1)
k from the first phase

is associated with box B
(2)
l from the second phase to form

a solution family with index s. Denote the search space
associated with solution family s as Bs = B̄

(1)
k × B

(2)
l .

Assume that S solution families are identified.
Note that in the case of a two phase mission with two deep

space manoeuvres, the decision vector is 11-dimensional:

x = [t0, T
(1)
of , r(1), α(1), θ(1), φ(1) · · ·

T
(2)
of , r(2), α(2), θ(2), φ(2)]T

(13)

It is normally the case the multiple local minima will be
present within each solution family. Hence, it is of relevance
to use a global optimization method to solve the problem.
The procedure is then as follows.

Algorithm 3: Global optimization on the pruned search
space



1) Define two positive integers N4 and N5, where N5 >>
N4, and N4 > dim(x). For each solution family s =
1, ...S, use a global optimiser to solve the following
problem to N4 iterations:

min
x

f(x) = ∆v
(1)
dep+∆v

(1)
DSM+∆v(1)

ga +∆v
(2)
DSM+∆v

(2)
b

(14)
subject to

x ∈ Bs


∆v
(1)
dep

∆v
(1)
DSM

v(1)
in

v(2)
out

∆v
(2)
DSM


 = h(x)

∆v(1)
ga = q1(v

(1)
in , v(2,i)

out , r
(1)
min)

(15)

Notice that the bounding boxes found by the pruning
method approximate the feasible regions with respect
to the inequality constraints associated with the original
optimization problem (mainly constraints on the vari-
ous ∆v magnitudes). Because of this, it is possible to
ignore such constraints at the final optimization step,
and simply check the solutions found for feasibility
with respect to such constraints. This is what we have
done in the case studies presented below. Alternatively,
the inequality constraints could be considered by the
global optimization algorithm using methods such as
those described in [8].
This results in S (sub-optimal) decision vectors
xk, k = 1, . . . , S, one for each solution family. Each
of these solution vectors contains useful information
to the mission analyst, since each of them corresponds
to the best feasible solution (with N4 iterations) found
for the corresponding solution family (notice that each
solution family is associated with a feasible launch
window.), and hence each solution gives an upper
bound for the objective function within each solution
family. Out of these solution vectors, the one that gives
the lowest value of the objective function is denoted
as the best solution found with N4 iterations. Denote
as s∗ the index of the solution family corresponding to
the best solution found to N4 iterations.

2) For solution family s∗ selected in step 1, use a global
optimiser to solve the the optimization problem defined
by Equations (14) and (15) to N5 iterations. Store the
best value of the decision vector x∗ found in this step,
and the corresponding objective function value.

Notice that the purpose of step 1 is to do an brief
evaluation of the solution families to select the one which
is most likely to contain the best solution, based on the
progress of the global optimizer after N4 iterations. Step
2 then optimizes the solution family selected in step 1 to
a greater number of iterations. It is assumed that all other

tuning parameters of the optimization algorithm are the same
in steps 1 and 2.

If a stochastic global optimization algorithm is employed,
then steps 1 and 2 can be repeated a number of times
to account for the variability of the results due to the
randomness in the global optimization algorithm.

In this work, we have used Differential Evolution as a
global optimizer, see [9].

VII. CASE STUDIES

A. Earth-Mars mission

A simple single phase mission has been designed to
compare the results that can be obtained with the proposed
pruning method with results obtained by grid sampling in
several dimensions. The mission consists of a transfer from
Earth to Mars with a deep space manoeuvre and an insertion
manoeuvre at Mars. There are six decision variables. The
initial ranges for the variables are:

t0 ∈ [2000, 3000]
Tof ∈ [150, 450]

r ∈ [−1, 2]
θ ∈ [−π/6, π/6]
φ ∈ [−π/8, π/8]
α ∈ [0.1, 0.9]

(16)

The impulsive manoeuvres were constrained as follows:

∆vdep ≤ 5 km/s
∆vDSM ≤ 2 km/s

∆vb ≤ 3 km/s
(17)

An insertion manoeuvre at Mars is specified with radius
of pericenter rp = 3950 km, and eccentricity e = 0.98.

For the grid sampling, 45 points were taken along the t0
interval, 20 along the Tof interval, 20 along the r interval,
10 along the θ interval, 10 along the φ interval, and 10 along
the α interval. This gives a total of 18 million points to be
sampled, of which only 19 points were found to be feasible.
The grid sampling required 36 million calls to the Lambert
solver, and took almost 3.36 hours on an Intel Core 2 Duo
2.0 GHz PC running Matlab 2007a.

The sequential quadratic programming algorithm, as im-
plemented in function fmincon of Matlab’s Optimization
Toolbox [10] was employed for the local optimization steps
associated with the proposed pruning method. To perform the
pruning, 150 random vectors were generated in phase 1 as
described in section V (N1 = 150), and the local optimizer
was started from each vector, resulting in 89 feasible vectors
(M1 = 89). The mean shift clustering algorithm was run
with a bandwidth value of 230 to find the approximate
feasible regions. A total of 116,326 calls to the Lambert
solver where done by the proposed pruning algorithm in this
case, and the pruning took 128 seconds on the same PC.
The clustering algorithm takes a negligible amount of time
to execute compared with the overall time it takes to perform
the pruning with the proposed method.



Figure 3 shows the projected bounding boxes found using
the proposed pruning method, while figure 4 shows the
projected points found using the grid sampling method.
Notice that the feasible points obtained by means of grid
sampling are located inside the bounding boxes found by
the proposed pruning method.
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Fig. 3. Illustration on the located bounding boxes on the t0−tarr plane for
the estimates of the feasible regions for the Earth-Mars mission The actual
bounding boxes are in six dimensions
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Fig. 4. Projection on the t0 − tarr plane of the feasible points located by
grid sampling in the case of the Earth-Mars mission. The actual points are
are in six dimensions

Notice the difference in computations between grid sam-
pling and the proposed pruning method, given the amount
of feasible vectors found by each method. Increasing the
sampling resolution to enable the grid sampling method
to find more feasible points would result in even heavier
computations.

B. Earth-Venus-Mars mission

To further test the proposed pruning method, we have
defined an Earth-Venus-Mars mission with one deep space

manoeuvre between Venus and Mars. The problem has 7
decision variables. The initial ranges for all variables are
defined below:

t0 ∈ [3650, 7302] MJD2000

T
(1)
of ∈ [50, 400] days

T
(2)
of ∈ [50, 700] days

r(2) ∈ [−0.28, 2]

θ(2) ∈ [−π, π] rad

φ(2) ∈ [−π/8, π/8] rad

α(2) ∈ [0.1, 0.9]

(18)

The impulsive manoeuvres were constrained as follows:

∆v
(1)
dep ≤ 5 km/s

∆v(1)
ga ≤ 5 km/s

∆v
(2)
DSM ≤ 2 km/s

∆v
(2)
b ≤ 5 km/s

(19)

An insertion manoeuvre at Mars is specified with radius
of pericenter rp = 3950 km, and eccentricity e = 0.98.

Figures 5 and 6 show the projected bounding boxes for
each phase. These diagrams illustrate how an individual box
in the first phase can be related to an individual box in
the second phase to form a solution family. Nine solution
families can be identified.

To perform the pruning for each phase, 120 random points
were generated in phase 1 as described in section V (N1 =
120), and the local optimizer was started from each point.
Similarly, 350 random initial points were generated in phase
2 (N2 = 350, 50 points per feasible t

(2)
dep interval, with seven

initial feasible intervals I1, . . . , I6). Four local optimizations
from each initial feasible point in phase 2 were performed
(N3 = 4), to evaluate feasibility with respect to the gravity
assist manoeuvre (Step 3 of Algorithm 2). After the gravity
assist calculations and backward constraining, 220 feasible
vectors were found in phase 1 (Q1 = 220), while 65 vectors
were left in phase 2 (Q2 = 65). The mean shift clustering
algorithm was run with bandwidth value of 230 and 270 in
phases 1 and 2, respectively. A total of 389,805 calls to the
Lambert solver were required for the pruning phase (650 s
CPU time)

Differential evolution with a population size of 20 indi-
viduals and parameter values F = 0.8 and CR = 0.8 was
employed to search for an optimal solution for each of the six
solution families located. The algorithm was initially run for
N4 = 200 iterations for each solution family. This was done
to select the most promising solution family. Afterwards,
Differential Evolution was run for N5 = 2000 iterations
for the selected solution family. A total of 192,000 Lambert
solver calls were performed during the optimization phase
(215 s CPU time). The returned result gave the following
values for the decision variables: t0 = 4469.9, T

(1)
of =

171.7855, T
(2)
of = 682.4994, r(2) = 0.5371, θ(2) = −1.9133
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rad, φ(2) = −0.0073 rad, α(2) = 0.5037. The resulting
impulsive manoeuvres were: ∆v

(1)
dep = 2.9743 km/s, ∆v

(1)
ga =

8.547×10−5 km/s, ∆v
(2)
DSM = 0.4729 km/s, ∆v

(2)
b = 2.0158

km/s, giving a total ∆v value of 5.4630 km/s. Figure 7 shows
the corresponding spacecraft trajectory projected on the plane
defined by the Earth’s rotation.

Notice that the tolerance of the Lambert solver was relaxed
at 10−6 for the pruning phase, and tightened at 10−14 for the
Differential Evolution optimization phase. This was done in
order to save computation time, as only an estimate of the
feasible regions is found through the pruning method, and the
regions found are not very sensitive to the tolerance value.

VIII. CONCLUSIONS

A method has been presented for the design of optimal
multiple gravity assist trajectories with deep space manoeu-
vres. A pruning method which considers the sequential nature
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Fig. 7. Representation of the best trajectory found when Differential
Evolution was applied to the pruned search space

of the problem has been described. The method locates feasi-
ble vectors using local optimization and applies a clustering
algorithm to find reduced bounding boxes which can be
used in a subsequent optimization step. Since multiple local
minima remain within the pruned search space, the use of a
global optimization method, such as Differential Evolution,
has been suggested for finding solutions which are likely
to be close to the global optimum. Two case studies have
been presented based involving missions with deep space
manoeuvres.
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