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ABSTRACT 
 
The work in this paper aims to introduce analysis and applications for the internal state 
model which is a new model for a swarm of rovers interacting via pair-wise attractive 
and repulsive potentials. The internal state model updates the state of the art in 
overcoming the local minima problem through solving the problem with comparatively 
lower computation cost than other methods. The simulations results show that using 
the internal state model, a swarm of planetary rovers, rather than moving in a static 
potential field, are able to manipulate the potential according to their estimation of 
whether they are moving towards or away from the goal, which allows them to escape 
from and maneuver around a local minimum in the potential field to reach a goal. An 
application of a swarm of rovers to solve the problem for different shaped obstacles is 
introduced to show the efficiency of the model. The model proves stable convergence 
to a goal and provides similarities with the behaviour of real groups of animals. 

 
INTRODUCTION  

 
Swarm robotics is a new and promising 
approach to the design and control of multi-
agent robotic systems. It has a wide range of 
applications in numerous fields from space 
exploration to the deployment of teams of 
robots in maintenance1. Specific features of 
aggregations are striking in natural systems 
whose members have high rates of information 
exchange such as animal herds, insect 
swarms, bird flocks, and fish schools2. This 
leads us to use one of the most important 
phenomena in natural systems, which is the 
collective behaviour, to enhance the 
performance of a team of planetary rovers 
during operation. 
In this paper we use a simple model of self-
propelled rovers, which experience some 
dissipative frictional force. The swarm consists 
of Np individuals with mass mi, position ri and 

relative distance |rij| between the ith and jth 
rover. A dissipative friction force with coefficient 
β is added to control the motion of the rovers. 
The rovers interact by means of a two-body 
generalized Morse potential, which decays 
exponentially at large distances and represents 
a realistic description of natural and artificial 
swarming robots. The equations of motion of 
the Np rovers are defined as: 
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he generalized Morse potential defines the T
interactions amongst the swarm rovers 
Vinteraction(ri), the attraction potential of the goal 



Vgoal(rig) and  the repulsive potential of the No 
obstacles Vobstacles(rio). Then, the global 
potential Vglobal(ri) is defined as 
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here Cig, lig, and  are the strength and 

PROBLEM DEFINITION
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range constants of the goal attraction potential 
and the zth obstacle  point repulsive potential 
that affects ith rover, respectively. 
 

 
 

 recent years new assumptions about In
architectures needed for intelligence have 
emerged. These approaches attempt to 
emulate natural, rather than artificial 
intelligence and are based on, or at least 
inspired by, biology. The local minima 
problem has been a serious issue for potential 
field methods for robot path planning3. The 
problem of local minima, shown in fig(1), has 
been discussed by many researchers4,5. Our 
motivation is that most of these attempts are 
not suitable for real time applications5. The 
problem can be defined such that an artificial 
potential field at G induces the rovers’ motion 
towards a goal. In order to prevent collision 
with a static obstacle, an additional repulsive 
potential field is required. In general, a local 
minimum may form due to the superposition of 
the goal potential and that of the obstacles, 
resulting in a group of rovers, becoming 
partially or globally trapped in a state other than 
the goal. 

 

 

 
Fig. 1: t=36 

Fig. 1: Classical reactive problem for a swarm of rovers 
with trapping in a local minimum 

 
For the scenario in fig(1), the swarm center 
velocity will increase as the swarm approaches 
the goal and decreases as an obstacle repels 
the swarm, while the swarm is again trapped if 
it enters a local minimum of the potential field.  
According to the local minimum survey4, 
forward chaining is indeed an efficient 
technique to solve the local minimum problem. 
The forward chaining technique development 
can be summarised in the following stages. 
The early version of forward chaining allows 
the potential surface to be manipulated so that 
the goal is temporarily replaced by a local 
subgoal6. By chaining the local subgoals in a 
sequence until eventually reaching the original 
goal, and then breaking the resulting path into 
steps, the agent can be gradually led to the 
original goal location. The method’s main 
disadvantage was the failure of the agent to 
reach the goal if the agent comes to a 
standstill. Therefore, the method was 
developed by introducing the forward chaining 
technique7 to keep the agent in motion through 
selection of the next subgoal target state to be 
the lowest potential value point on a circle 
whose center is at the current state. Although 
the disadvantage is covered, this transforms 
the local minimum problem into a local 
oscillation problem of various step lengths. To 
overcome the local oscillation problem, the 
back and forth motion was eliminated through 
restricting subgoal selection to the forward 
semi-circle corresponding to the last direction 
of movement. While this enables the agent to 
move forward along the obstacle boundary, for 
shallow C-shaped boundaries, further 
modifications that include more computations 
were made to overcome more curvature in 
difficult obstacle shapes. Fig. 1: t=0 

 



 
Fig. 2: path of an agent uses the forward chaining 

technique for successive different types of C-shape 
obstacles7 

 
From the development of the method, it can be 
seen that the early version of the algorithm has 
been enhanced. A sample path using the final 
FWDS4 subgoal placement heuristic algorithm 
is shown in fig(2), together with the oscillatory 
path, shown in dashed line, according to one of 
the algorithm’s earlier versions for a single 
agent.  

 
INTERNAL STATE MODEL 

 
Inspired from escape from complex 
workspaces8, which can be seen in many 
natural systems, the use of dynamic internal 
states (potential field free parameters) is 
considered as a means of allowing rovers to 
manipulate the potential field in which they are 
manoeuvring to solve the local minimum 
problem. 
The repulsion potential range affecting the ith 
rover (lio) is represented as a function of an 
obstacle constant (lo), which characterizes the 
physical nature of the obstacle, and the rover 
repulsion potential range (lri) which 
characterizes the rover internal state, while the 
repulsion potential strength affecting the ith 
rover (Cio) is represented as the obstacle 
constant (Co). The attraction potential range of 
the goal affecting the ith rover (lig) is also 
represented as the goal constant (lg), which 
characterizes the physical nature of the goal, 
while the attraction potential strength of the 
goal affecting the ith rover (Cig) is represented 
as the goal constant (Cg) such that 
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gig ll =                                       (8) 
 
For the problem scenario shown in fig(1), the 
swarm will never attempt to manoeuvre around 
the fixed obstacle simply because the rovers 

never know that they are trapped.  The speed 
of the centre-of-mass of the swarm is used as 
an effective mechanism for the swarm to 
increase its perception about its progress 
through the workspace, and so avoid trapping 
in local minima. The function Qc is used to 
increase the perception of the group of rovers 
inspired from reward or punishment based 
perception in real biological systems9,10. The 
function is defined such that if the swarm is 
being repelled away from the goal, Qc will have 
a negative value that is viewed as punishment 
indicating that a part of or the entire swarm is 
moving away from the goal. If Qc ≥ 0, which is 
viewed as reward, the swarm senses 
collectively that it is moving towards the goal. 
The following set of first order differential 
equations are now used to express the internal 
states of the ith rover5 
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where coefficients Ar, Br, Aa, Ba, Aβ, λq, λr, λv, λa, 
λβ are employed to scale the dynamics of the 
internal states. 
The swarm of rovers should be guaranteed to 
maintain a cohesive swarm for two reasons (1) 
to magnify the effect of the speed of the center-
of-mass of the swarm on the global perception 
of the swarm and (2) to ensure that the swarm 
aggregates to face the problem collectively and 
then acts as a flock, as noted in studies of real 
biological systems11. Equation (9) – equation 
(12) express the repulsion amplitude and range 
and the attraction amplitude and range of the ith 



rover, according to the speed of each rover as 
well as the value of the function Qc, which 
depends on the speed of the center-of-mass of 
the swarm. When the rovers are repelled from 
an obstacle, the swarm center velocity 
decreases, lio then increases due to equation 
(6) and equation (10), which turns the 
workspace in the neighbourhood of the 
obstacles into a zone of maximum potential. 
This then leads to escape from the local 
minima because the potential field relaxes due 
to the damping terms in the differential 
equations for the internal states defining a 
gradient path which the aggregated swarm 
follows directly to the goal.  
The cohesion generated by equation (9) – 
equation (10) ensures aggregation amongst the 
swarm’s rovers to face the local minimum 
problem. The net effect is then that the trapped 
swarm is forced to simultaneously explore 
escape paths. The damping terms in equation 
(9) – equation (12) ensure that the deviation of 
the rover internal state relaxes and returns to 
an equilibrium value as soon as the local 
minimum problem is solved. 
Moreover, equation (13) ensures smooth 
manoeuvres around obstacles by linking the 
dissipation coefficient of each rover to its 
speed.  

 
MODEL PERFORMANCE ANALYSIS 

 
We compare our model performance with the 
most updated technique to solve the local 
minimum problem; the forward chaining 
technique7, by comparing the results obtained 
by the internal state model fig(3) to the 
published results7 obtained by forward chaining 
fig(2), for the same environment. In addition to 
single rover, we also consider cooperation 
amongst multiple rovers. It is shown that the 
swarm aggregation concept is used and the 
rovers prefer to aggregate when facing a 
problem in a way that matches the studies 
based on real animal group behaviour.  
The three disadvantages that have motivated 
the development of the forward chaining 
method are covered in the internal state model 
by using the perception function Qc along with 
the use of the squeeze effect8, which guarantee 
keeping the rovers in motion until reaching the 
global potential minimum position through 
emitting the rovers away from any obstacle 
region and ensure eliminating the oscillation 
problem (back and forth motion) by defining a 
gradient path around the obstacles through 
which the rovers are led directly to the goal. 
 

 
 

Fig. 3: Path of a rover using the internal state model to 
escape from local minima for different types of C-shape 

obstacles 
 

SIMULATION RESULTS 
 
Using the new dynamic internal states for the 
same problem as used earlier, when a part of 
the swarm is repelled the function Qc switches 
to a negative value. Therefore, the attraction 
potential equations in the algorithm are 
activated such that as the rovers’ speed 
increases, the inter-rover attraction potential 
increases and they gather to form a cohesive 
swarm. This has the advantage of magnifying 
the effect of the function Qc and making the 
swarm aggregate to solve the problem for the 
entire swarm. Weak aggregation may lead to 
part of the swarm remaining trapped in the 
local minimum. In addition, a cohesive swarm 
is required to ensure that the position and 
velocity of the centre-of-mass remains 
meaningful. Goal and obstacle interaction 
parameters used for the problem scenario are 
used again for the simulation results shown in 
fig(4).  

 

 
Fig. 4: t=2 
 

 
Fig. 4: t=8 



 
Fig. 4: t=30 
 

 
Fig. 4: t=37 
 

 
Fig. 4: t=47 
 

 
Fig. 4: t=50 

 
Fig. 4: t=62 
 

Fig. 4: Path of a rover using the internal state model to 
escape from local minima for different types of C-shape 

obstacles5 
 
A Multiple goals application is now presented.  
A group of rovers are to move together in a 
multi-obstacle environment to visit three goals 
G1, G2, and G3 and switching off each goal they 
visit. In this case, the robots are required to 
reach the goals with obstacle avoidance, and to 
move in a group without colliding with each 
other. The rovers during the mission are shown 
in fig(5), while fig(6) shows the swarm center 
path during the mission. The goal and obstacle 
interaction parameters are Co =4, Cg1 =70, Cg2 
=50, Cg3 =20, lo =0.25 and lg =60, the rover’s 
initial interaction parameters are Ca =0.5, la =1, 
Cr =0.5, lr =1, β =0.5 and the control 
parameters used are unit except Ar =0.6, Br 
=0.6, Aβ =1.3, ε =0.5, where ε is the goal 
proximity which if visited by any rover the goal 
will be switched off.  
 
 

 
Fig. 5: t=1 
 

 
Fig. 5: t=2 



 
Fig. 5: t=8 
 

 
Fig. 5: t=17 
 

 
Fig. 5: t=21 
 

 
Fig. 5: t=53 
 

 
Fig. 5: t=66 
 

 
Fig. 5: t=97 
 
Fig. 5: Path of swarm of rovers that aggregate during 

a mission 
 

 
Fig. 6: Path of swarm of rovers that aggregate during 

a mission 
 

The simulations results show that using the 
internal state model, a swarm of planetary 
rovers, rather than moving in a static potential 
field, are able to manipulate the potential 
according to their estimation of whether they 
are moving towards or away from the goal, 
which allows them to escape from and 
maneuver around a local minimum in the 
potential field to reach a goal. An application of 
a swarm of rovers to solve the problem for 
different shaped obstacles is introduced to 
show the efficiency of the model. 

 
CONCLUSIONS 

 
Using the internal state model, a swarm of 
planetary rovers, rather than moving in a 
static potential field, are able to manipulate 
the potential according to their estimation of 
whether they are moving towards or away 
from the goal, which allows them to escape 
from and maneuver around a local minimum 
in the potential field to reach a goal.  
This work is considered a new technique to 
overcome the local minima, which might 
form in 2D artificial potential fields based 
navigation environments for a swarm of 
planetary rovers. We compare our model 
performance with the most updated 
technique to solve the local minimum 
problem; the forward chaining technique. 
The performance comparison results confirm 
that the internal state model is more suitable 
for real time application with high efficiency 



in solving the problem along with 
comparatively lower computation cost.  
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