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ABSTRACT 

An indirect method is used to obtain an analytical control law for a spacecraft with a low-thrust propulsion system 
which is constituted by a solar sail coupled with a solar electric thruster. Constraints on the control inputs for such as 
the system need to be taken into account for the design of a control law to avoid reducing control performance, even 
though the solar electric thruster is employed as an auxiliary system capable of increasing the thrust magnitude of the 
sailcraft. The aim of this paper is to derive an analytical control law for a system with input constraints. A barrier 
function is used to analytically obtain a control law without a computationally expensive iterative algorithm. 
Therefore, using the analytic method presented, a transfer orbit can be readily calculated with an onboard computer. 
Pontryagin’s maximum principle is also used to obtain an optimal control law to compare with the proposed control 
law. The proposed control law is demonstrated as suitable for an example transfer problem between circular and 
coplanar orbits. 
 

NOMENCLATURE S = Solar sail 
m = sailcraft mass ⊕ = Earth 
a = thrust acceleration ♂ = Mars 
r = San-sail distance  

Superscript v = velocity vector of sailcraft 
v = radial velocity ^ = unit vector 

* = optimal value θ = polar angle 
 ω = angular velocity of azimuth angle 

1. INTRODUCTION T = thrust 
P = electric thruster input power The concept of using solar radiation pressure as a 

means of  propulsion is attractive despite the thrust 
magnitude being small. Indeed, solar ailing is 
increasingly being considered by ESA, NASA and 
JAXA for future science missions. A solar sail has a 
significant advantage in propulsive efficiency. In 
particular, its effective specific impulse is superior to 
electric propulsion for long duration missions [1]. There 
is an ability to exploit an increase in mission duration 
since a solar sail does not require propellant and is 
completely reusable, i.e. it can continue to produce 
thrust for an indefinite time. In spite of its advantage, 
very little effort has been expended to date on the 
development of the solar sail concept into a practical 
propulsion system. 

c = speed of light 
u = control variable vector 
λ = adjoint variable 
ν = Lagrange multiplier 
Α = sail area 
α = sail pitch angle 
β = lightness number 
σ = sail loading 
μ = gravity constant of Sun 
L = solar luminosity 
 
Subscript 
0 = initial value 
f = terminal value 
p = propellant Trajectory optimization for a solar sail has been a 

focus of development activities as well as other forms 
of low-thrust propulsion [2] – [9]. Shrivastava et al. [2] 
introduced a control law for a panel leading to 

r = radial direction 
θ = circumferential direction 
E = Electrical thruster 
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maximum changes in various orbital elements. The 
control law was obtained by using parametric 
optimization. Kim et al. [3] obtained highly accurate 
solutions for the trajectory by applying computational 
schemes such as adaptive simulated annealing and a 
quasi-Newton method. As a smart method for global 
trajectory optimization, Dachwald [4] used artificial 
neural networks which can be combined with 
evolutionary algorithms. Otten et al. [5] and Mengali et 
al. [6] used a direct method to obtain near-optimal solar 
sail trajectories. An indirect optimization procedure was 
used to assess the performance of solar sails for 
interplanetary missions [7], [8]. However, using control 
laws which depend on a computational scheme or need 
recursive calculation to derive an optimal solution, an 
optimal trajectory cannot be obtained in real-time. It is 
preferred that an analytical control law [9] is available 
which can recalculate an optimal trajectory. 
Furthermore, such a control law provides significant 
operational benefits, particularly for future highly 
autonomous missions. 

Propulsion by means of a solar sail does not require 
propellant. However, the thrust provided by a solar sail 
is limited, and large sails are required to keep the trip 
time reasonable. The idea of combining a solar electric 
propulsion (SEP) systems with a solar sail as a hybrid 
propulsion system has been discussed under simplified 
assumptions [8]. Input constraints due to mechanical 
and electrical power constraints exist when the hybrid 
propulsion system is treated in the sailcraft. If the 
constraints are not taken into account for analysis, they 
result in serious performance deterioration, i.e. it might 
not be possible to realize a desired optimal orbit transfer. 
The optimal trajectory for such as the constrained 
system has been derived by using mathematical 
programming which is not necessarily appropriate so as 
to update an optimal trajectory. The Pontryagin’s 
maximum principle is used to obtain a control law by a 
solving two-point boundary value problem. However, 
such control laws are not suitable for the objective of 
this study because nonlinear equations need to be 
solved in an iterative algorithm on-board. 

In this study, an analytical control law is derived for 
the problem by using the barrier function method. The 
method, whose advantage is to transform a constrained 
optimal problem into an unconstrained optimal problem, 
has been used to solve a constrained optimal problems. 
We apply this method for the constrained system 
considered here. A performance index which contains a 
barrier function is defined to derive an analytical control 
law by solving a two-point boundary value problem. 
Lagrange multipliers used as adjoint variables can be 
calculated by solving algebraic equations which are 
expressed by the boundary conditions. As a result, 

efficient computation is possible in real-time. Moreover, 
the sail pitch angle and the electric power are controlled 
in a feasible region defined by constraints. A control law 
which is derived by using the maximum principle is 
also described. The proposed method is demonstrated 
for an Earth-Mars trajectory optimization problem. 
 

2. SYSTEM MODEL 

2.1 Equations of motion 
For the sake of simplicity, sailcraft motion in the 

ecliptic plane is assumed. Coplanar circular orbits are 
also assumed for the planets. The environmental forces 
acting on the sailcraft system are due to the 
gravitational field and the radiation pressure of the Sun. 
The heliocentric equations of motion for the sailcraft are 
as follows: 

vr =&  (1a) 

n̂n̂)n̂r̂(r̂v
m
T

rr
+⋅+−= 2

22
μβμ

&  (1b) 

pmm && −=  (1c) 

where  and n  denote the unit vector directed along 
the Sun-sail line and normal to the sail surface, 
respectively. SEP is used to assist the solar sail. Thrust 
gimballing of the SEP system is not considered to avoid 
complexity, so that the SEP thrust is along the sail 
normal. 

r̂ ˆ

 

Solar 
gravitation 

Local 
horizon 

 
The complete system dynamics are quite complex. 

The sale pitch angle α, which is the angle between the 
sail and the local horizon in Fig.1, is an input constraint 
with admissible values for its range from –π/2 to π /2. 
As mentioned before, the angle of the thrust which is 
generated by the SEP system is fixed to avoid 
complexity, i.e. the thrust is generated on the normal 
line to the sail surface.  

The SEP system is modeled through a polynomial 
approximation for the thrust and the propellant mass 
flow rate. The time derivative of propellant mass, , is Pm&

Fig.1 Schematic of parameters for spacecraft motion.
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assumed to be a function of the total electric thruster 
input power P of the SEP system. The relationships 

P = P (P) and T = T (P) are expressed using a 
second-order polynomial approximation [8].  
m&

T

m&

=P&

∑
=

=
2

0i

∑
=

2

0i

i
i Pam  (2) 

i
i Pb  (3) 

where ai and bi are constant coefficients which are 
identified through  experimental data. These values are 
shown later. 
 
2.2 Solar sail model 

A solar sail consists of a large surface with reflective 
material such as a metallized plastic film and a 
supporting structure. Any coupling between the SEP 
system and the solar sail propulsion system is neglected.  

The dimensionless sail loading parameter, β, which is 
used in Eq.(1b) will be defined as the ratio of the solar 
radiation pressure acceleration to the solar gravitational 
acceleration. This parameter is referred to as the 
lightness number of the solar sail. The lightness number 
can also be written as the following equation. 

σ
σβ =

′  (4) 

c
Ls

μπ
σ

2
=′  (5) 

where Am /≡σ  ,which is a generalized sail loading, 
varies with time because the total sailcraft mass 
decreases according to Eq.(1c). The critical solar sail 
loading parameterσ ′  is a unique constant which is a 
function of the solar mass and the solar luminosity. This 
is found to be 1.539 g/m2 [10].  
 

3. CONTROL LAW WITH INPUT CONSTRAINTS 

Control laws are designed for an inequality 
constrained problem (ICP). Firstly, a control method by 
using a barrier function is explained to derive an 
analytical control law. A control law using Pontryagin’s 
maximum principle is also described to clarify the 
advantage of the proposed control method for the 
problem treated. 

3.1 Barrier function 
When solving an optimal control problem the 

performance index of a system with state variable 
vector x(t) is defined as  

where tf denotes the terminal time of a mission. Then 
the Hamiltonian H is defined using the function 

 in this optimization problem as follows: ))(),(x( tutL

( ) xλ)(),(x &TtutLH +=  (7) 

where λ is the adjoint variable vector. The state 
equation is expressed as . Euler- 
Lagrange equations based on the calculus of variations 
are derived as follows: 

utt b)(Ax)(x +=&

Aλ
x

λ T−=
∂
∂

−=
HT&  (8) 

( ) 0=+
∂

∂
=

∂
∂ bλ)(),(x T

u
tutL

u
H   (9) 

The variation in J must be zero for arbitrary variations 
in u, i.e., it is necessary to satisfy the optimality 
condition with respect to u in Eq. (9). 

The function  is usually defined in the 
barrier function method as 

))(),(x( tutL

( ) ( ) ( )(),(x)(),(x)(),(x tutBtutftutL )ρ+=   (10) 

where ρ and B(x(t), u(t)) denote the barrier parameter 
and barrier function, respectively. As previously 
mentioned, a feature of the method is that it transforms 
a constrained problem into a non-constrained problem. 
Furthermore, the method is extremely robust and it 
provides a considerable amount of structural 
information about the ICP. In particular, the method 
does not require the solution of the ICP to be a 
Karush-Kuhn-Tucker point. The barrier parameter, ρ, is 
calculated in the barrier function method so as to 
maximize the Hamiltonian. In this study, the parameter 
is treated as a constant so that recursive calculation is 
avoided as much as possible. 

It is difficult to apply the proposed guidance law to 
the problem because of the nonlinearity of the vehicle’s 
dynamics in Eq.(1). Thus, its equations of motion 
should be linearized by using feedback linearization. 
The new control inputs to the system which are 
expressed in the polar coordinate system are defined as 
follows: 

ααμβμω coscos3
22

2

m
T

rr
r ++−=ru  

αμω cos2
2 )( ES aa

r
r ++−=  (11) 

r
m
T

r
u /)( αααμβωθ sinsincos2 2

2 ++−= v  

(f dttutLJ )(),(x )∫=
t

t0

 (6) r
aa ES αω sin2 )( ++−

=
v  (12) 
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The accelerations generated by a solar sail and a solar 
electric propulsion system are denoted as aS and aE, 
respectively. 

The equations of motion are expressed as 
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It is difficult to provide the control force in Eqs.(16a) 
and (16b) separately along the radial and angular 
directions in an actual system. Therefore, it is necessary 
to derive control inputs, the sail pitch angle and the 
electric thruster input power, which realize the control 
laws. Using Eqs.(11), (12), (16a) and (16b), an optimal 
sail pitch angle is obtained. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
+

= −
22

1 2tan
rru

ru
/

*
*

μω
ωα θ

*
r

v  (18) 

It is obvious from Eq. (13) that there is no interference 
between the motion in the radial and angular directions; 
thus, Eq. (1) can be transformed to a state equation. 

The electric thrust input power is similarly derived from 
Eqs.(2), (3), (16a), and (16b). As a result, the 
calculation for these control inputs does not require 
solving any differential equations at every sampling 
time. Thus, the control method is capable of providing 
the control inputs in real-time despite the proposed 
control algorithm developed being explicitly dependent 
of time.  

To consider input constraints in the analysis, it is 
assumed that the sail distance does not exceed the 
radius of the Mars’ orbit and the circumferential 
velocity of the sailcraft is less than that of Mars. The 
sail pitch angle and power of the SEP P are subject to 

22 // παπ ≤≤−  and max0 PP ≤≤ , respectively. 
Therefore, the control inputs ur and uθ are subject to the 
following inequalities. 

maxrr uu < ,  maxθθ uu <  (14) () 

The equations of motion of the sailcraft treated in this 
paper consist of two systems in Brunovsky canonical 
systems. The analytical solutions in terms of state 
variables in Eq.(13) can now be obtained. For instance, 
the derivation of the control input in the radial direction 
is described. The state variables of this system, r and v, 
can be derived analytically from Eqs.(16a) and (17a) as 
follows:  

The proposed idea can be readily applied to this 
problem because Eq. (13) is expressed in a Brunovsky 
canonical form.  

The performance index is defined and used together 
with Eq. (6) to generate barriers corresponding to the 
input constraints in Eq. (14). The barrier function is 
defined as  [11]. ))](([ tuB secln=

[
] rr

r

r

CtCt

kr

+++++

++= −

vvv

vvvv

)2(tan

)1ln()(tan-
2

1-

212
2

νλλ

λλλλ
ν  (19a) 

The boundary conditions for the transfer orbit 
problem are set as follows: [ ] vvvvv Ck

r

r ++−= − })(1ln{
2
1)(tan 21 λλλ

ν
 (19b) 

r( t0 ) = r⊕, v( t0 ) = 0, θ ( t0 ) = 0, ω ( t0 ) = (μ / r⊕)½ (15a) 
r ( tf ) = r♂, v ( tf ) = 0, θ ( tf ) = θ f, ω ( tf ) = (μ / r♂)½ (15b) where, Cr and Cv in Eqs.(18) and (19) are constants of 

integration and are calculated by equations using 
terminal values of state variables and Lagrange 
multipliers.  

The initial and terminal conditions of the other 
parameters are arbitrarily set in the numerical 
simulation. The control laws for radial and 
circumferential direction are obtained from Eq. (9) and 
the transversality condition. [ )())(( vνννν

ν
+−+= −

frrfr
r

r
r ttkC 12

2 tan1
2

 

vv λ
π

λ 1max1 tan2tan −− −=−= r
rr

uku*   (16a) ))()( 2ln(1 vv νννν +++− frfr tt  

] 0rt fr ++− )( vνν  (20a) 
ω

θ
ωθθ λ

π
λ 1max1 tan2tan −− −=−=

uku*  (16b) 
[ )()( vvv νννν

ν
++−= −

frfr
r

r ttkC 1tan  

When a two-point boundary-value problem is solved, 
the relationships between the adjoint variables λ and the 
Lagrange multipliers ν are given by the following 
equations. 

( 0
21ln

2
1 vvv +⎥⎦

⎤+++− )()( νννν frfr tt )  (20b) 

vv ννλνλ +−== )(, tt frrr  (17a) 

ωθωθθ ννλνλ +−== )(, tt f  (17b) 

Then, the control input ur of Eq. (16a) can be rewritten 
as a variable feedback controller using Eqs.(19a) and 
(19b): 
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v
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imii ab

mr
rk λαλαλ ω −

+
=
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From Eqs.(30a) and (30b) , the optimal electric thruster 
input power is obtained as follows: 

where Kr and Kv in Eq. (20) are like feedback gains. 
 
3.2 Maximum principle 

Pontryagin’s maximum principle has been used to 
obtain a control law for a system using a solar sail. An 
optimal control law for the problem both of the time 
optimal and the minimum fuel consumption control is 
derived to maximize the performance index J. 

f
f t
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The optimal sail pitch angle can be similarly obtained.  

pmrr muuH &λλλωλλ θωθ −+++= vv  (25) 
[ αλα

αα
cos1maxarg )(*

ES aar
r

+=
Ω∈ v

 
where η is a tradeoff parameter. η = 1 and η = 0 
correspond to the minimum-time trajectory and to the 
minimum-fuel consumption trajectory. Note that the 
Hamiltonian includes the mass variation. The 
Euler-Lagrange equations of this system are derived 
from Eq.(8). 

]αλω sin)( ES aa +  (31) 

The results are given by the following nonlinear 
equation. 

α
αλλ ω
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∂

+ Sa
r

)( tanv
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∂
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vωαλω
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∂

∂
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r
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0=θλ&  (26b) 

r
ωλλλ ω2+−= rv

&  (26c) 

r
r v
v ωθω λωλλλ 22 +−−=&  (26d) 

The control inputs of the sailcraft can be derived from 
Eqs.(30) and (31). However, it is difficult to obtain the 
control inputs in real-time since the differential 
equations relating to the adjoint variables in Eqs.(26a) 
to (26e) and the coefficient ki in Eq.(29) must be solved 
at every sampling time.  
 

4. NUMERICAL RESULTS [ αλλ cos1 )( ESm aar
mr

+−= v
&  

]αλω sin)( ES aa ++  (26e) 

A control vector maximizes the 
performance index through an indirect approach. When 
the optimal control vector is selected in the domain 
of the feasible reagion Ω u, the Hamiltonian 

TP ][u α=

*u
H ′  which 

coincides with that portion of H of Eq.(25) is an 
absolute maximum. 
 

H
u

′=
Ω∈u

*u maxarg  (27) 

A sailcraft whose thrust is generated by a solar sail 
and SEP system is controlled to achieve a rendezvous 
mission toward Mars. The sailcraft has a launch mass 
m0 = 400 kg. The initial value of the lightness number is 
0.1686. The terminal distance rf is equal to r♂ = 1.5237 
AU. The coefficients of the SEP system ai and bi in 
Eqs.(2) and (3) are referred to values for a plasma 
thruster (see Table 1). The power of the thruster P is 
assumed to be less than Pmax = 1.5 kW. These numerical 
conditions were selected to match with reference [8] as 
much as possible. 
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Table 1 Coefficients of the SEP system. 
coefficient Value 

a1 [mg]  1.953 
a 2 [mg/kW]  2.545 
a 3 [mg/kW2]  -0.3716 
b1 [mN]  4.68 
b 2 [mN/kW]  60.94 
b 3 [mN/kW2]  -5.1 

 
A transfer trajectory with mission time tf = 264.7 days 

under the proposed control law is shown in Fig.2. 
Figures 3 to 6 show time histories of the Sun-sail 
distance, radial velocity, polar angle, and angular 
velocity of the sailcraft, respectively. From these figures, 
it is apparent that the final values with respect to the 
state variables satisfy the terminal conditions. 

The sail pitch angle varies within its constraint as 
shown in Fig.7. The sailcraft initially exploits SEP more 
than the solar radiation pressure shown in Fig.8. It can 
be seen that the SEP acceleration does not exceed its 
maximum value. 

Figure 9 shows the time history of the sailcraft mass. 
The SEP consumed about 40 kg propellant. The ratio of 
the used propellant mass to initial sailcraft mass was 
0.099. The ratio can not be simply compared with other 
results in Ref. [8] because Mengali et al. considered the 
thrust gimbaling as a control variable. However, it is 
noted that the necessary propellant mass for the mission 
is less than the result [8] in this numerical simulation 
even though there is no thrust gimbaling. 

 
 

5. CONCLUSIONS 

The design of a control law based on the barrier 
function method was introduced for a solar sailcraft 
with an input constraint on the pitch angle. An SEP 
system which has a constraint condition in regard to its 
input power was used to assist the thrust generated by 
the solar sail. The sail pitch angle and the electric thrust 
input power were treated as control variables in this 

paper. A control law was derived analytically for the 
system with input constraints by applying the proposed 
control method. 

A mission toward Mars was considered to assess the 
validity of the proposed control law. Numerical results 
show the possibility to control by an onboard computer 
because recursive calculation is not required to obtain 
the control law. Analytical solutions of state variables 
are also derived under the proposed control law. 
Therefore, a tracking control around a reference 
trajectory which is calculated by the analytical solutions 
can be applied to reduce the effect of disturbances on 
the sailcraft. 
 

REFERENCES 
[1] MacNeal, R. H. “Comparison of the Solar Sail with 

Electric Propulsion System,” NASA Contractor 
Report, NASA CR-1986, 1972. 

[2] S. K. Shrivastava and C. K. Rajasingh, “Optimum 
Orbital Control Using Solar Radiation Pressure,” 
Journal of Spacecraft, Vol.12, No.8, pp.502-504, 
1975. 

[3] Kim, M. and Hall, C. D., “Symmetries in the 
Optimal Control of Solar Sail Spacecraft,” Celestial 
Mechanics and Dynamical Stronomy, 92, pp.273-293, 
2005. 

[4] Dachwald, B., “Minimum Transfer Times for 
Nonperfectly Reflecting Solar Sailcraft,” Journal of 
Spacecraft and Rockets, Vol.41, No.4, pp.693-695, 
2004. 

[5] Otten, M. and McInnes, C. R., “Near-Minimum- 
Time Trajectories for Solar Sails, Journal of 
Guidance, Control, and Dynamics,” Journal of 
Guidance, Control, and Dynamics, Vol.24, No.3, 
pp.632-634, 2001.  

90°
120° 60°

[6] Mengali, G. and Quarta, A. A., “Near-Optimal 
Solar-Sail Orbit-Raising from Low Earth Orbit,” 
Journal of Spacecraft and Rockets, Vol.42, No.5, 
pp.954-958, 2005. 

[7] Colasurdo, G. and Casalino, L., “Optimal Control 
Law for Interplanetary Trajectories with Nonideal 
Solar Sail,” Journal of Spacecraft and Rockets, 
Vol.40, No.2, pp.260-265, 2003. 

[8] Mengali, G.. and Quarta, A. A., “Tradeoff 
Performance of Hybrid Low-Thrust Propulsion 
System,” Journal of Spacecraft and Rockets, Vol.44, 
No.6, pp.1263-1270, 2007. 

[9] Macdonald, M. and McInnes, C. R., “Analytical 
Control Laws for Planet-Centered Solar Sailing,” 
Journal of Guidance Control, and Dynamics, Vol.28, 
No.5, pp.1038-1048, 2005. 

[10] McInnes, C. R., Solar Sailing: Technology, 
Dynamics and Mission Applications, Springer-Verlag, 
London, 1999. 

[11] Uchiyama, K., “Guidance Law for Lunar Lander 
with Input Constraint,” AIAA Guidance, Navigation 
and Control Conference, AIAA2007-6848, 2007. 

0°

30°150°

180°

210°

240°
270°

300°

330°
Initial orbit r⊕  =1 

Final orbit r♂=1.5237

departure arrival 

Fig.2 Earth-Mars trajectory with proposed control 

6 



 

7 

1.6 6

 

 
 
 
 
 
 
 

Fig.4 Time history of radial velocity.
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Fig.7 Time history of sail pitch angle.
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Fig.5 Time history of polar angle.
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Fig.3 Time history of sail distance.
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Fig.8 Time history of thrust acceleration of SEP.
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Fig.6 Time history of angular velocity.




