Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Analytical control laws for interplanetary solar sail trajectories with constraints

Uchiyama, Kenji and McInnes, C.R. (2008) Analytical control laws for interplanetary solar sail trajectories with constraints. In: 59th International Astronautical Congress, 2008-09-29 - 2008-10-03.

[img]
Preview
PDF (strathprints020150.pdf)
strathprints020150.pdf

Download (277kB) | Preview

Abstract

An indirect method is used to obtain an analytical control law for a spacecraft with a low-thrust propulsion system which is constituted by a solar sail coupled with a solar electric thruster. Constraints on the control inputs for such as the system need to be taken into account for the design of a control law to avoid reducing control performance, even though the solar electric thruster is employed as an auxiliary system capable of increasing the thrust magnitude of the sailcraft. The aim of this paper is to derive an analytical control law for a system with input constraints. A barrier function is used to analytically obtain a control law without a computationally expensive iterative algorithm. Therefore, using the analytic method presented, a transfer orbit can be readily calculated with an onboard computer. Pontryagin's maximum principle is also used to obtain an optimal control law to compare with the proposed control law. The proposed control law is demonstrated as suitable for an example transfer problem between circular and coplanar orbits.