Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Uniformly convergent high order finite element solutions of a singularly perturbed reaction-diffusion equation using mesh equidistribution

Beckett, G. and Mackenzie, J.A. (2001) Uniformly convergent high order finite element solutions of a singularly perturbed reaction-diffusion equation using mesh equidistribution. Applied Numerical Mathematics, 39 (1). pp. 31-45. ISSN 0168-9274

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We study the numerical approximation of a singularly perturbed reaction-diffusion equation using a pth order Galerkin finite element method on a non-uniform grid. The grid is constructed by equidistributing a strictly positive monitor function which is a linear combination of a constant floor and a power of the second derivative of a representation of the boundary layers-obtained using a suitable decomposition of the analytical solution. By the appropriate selection of the monitor function parameters we prove that the numerical solution is insensitive to the size of the singular perturbation parameter and achieves the optimal rate of convergence with respect to the mesh density.