Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution

Beckett, G. and Ramage, A. and Sloan, D.M. and Mackenzie, J.A. (2001) On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution. Journal of Computational Physics, 167 (2). pp. 372-392. ISSN 0021-9991

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Numerical experiments are described that illustrate some important features of the performance of moving mesh methods for solving one-dimensional partial differential equations (PDEs). The particular method considered here is an adaptive finite difference method based on the equidistribution of a monitor function and it is one of the moving mesh methods proposed by W. Huang, Y. Ren, and R. D. Russell (1994, SIAM J. Numer. Anal.31 709). We show how the accuracy of the computations is strongly dependent on the choice of monitor function, and we present a monitor function that yields an optimal rate of convergence. Motivated by efficiency considerations for problems in two or more space dimensions, we demonstrate a robust and efficient algorithm in which the mesh equations are uncoupled from the physical PDE. The accuracy and efficiency of the various formulations of the algorithm are considered and a novel automatic time-step control mechanism is integrated into the scheme.