Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution

Beckett, G. and Ramage, A. and Sloan, D.M. and Mackenzie, J.A. (2001) On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution. Journal of Computational Physics, 167 (2). pp. 372-392. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Numerical experiments are described that illustrate some important features of the performance of moving mesh methods for solving one-dimensional partial differential equations (PDEs). The particular method considered here is an adaptive finite difference method based on the equidistribution of a monitor function and it is one of the moving mesh methods proposed by W. Huang, Y. Ren, and R. D. Russell (1994, SIAM J. Numer. Anal.31 709). We show how the accuracy of the computations is strongly dependent on the choice of monitor function, and we present a monitor function that yields an optimal rate of convergence. Motivated by efficiency considerations for problems in two or more space dimensions, we demonstrate a robust and efficient algorithm in which the mesh equations are uncoupled from the physical PDE. The accuracy and efficiency of the various formulations of the algorithm are considered and a novel automatic time-step control mechanism is integrated into the scheme.