Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Fundamental systems of numerical schemes for linear convection diffusion equations and their relationship to accuracy

Ainsworth, Mark and Dörfler, Willy (2001) Fundamental systems of numerical schemes for linear convection diffusion equations and their relationship to accuracy. Computing, 66 (2). pp. 199-229. ISSN 0010-485X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new approach towards the assessment and derivation of numerical methods for convection dominated problems is presented, based on the comparison of the fundamental systems of the continuous and discrete operators. In two or more space dimensions, the dimension of the fundamental system is infinite, and may be identified with a ball. This set is referred to as the true fundamental locus. The fundamental system for a numerical scheme also forms a locus. As a first application, it is shown that a necessary condition for the uniform convergence of a numerical scheme is that the discrete locus should contain the true locus, and it is then shown it is impossible to satisfy this condition with a finite stencil. This shows that results of Shishkin concerning non-uniform convergence at parabolic boundaries are also generic for outflow boundaries. It is shown that the distance between the loci is related to the accuracy of the schemes provided that the loci are sufficiently close. However, if the loci depart markedly, then the situation is rather more complicated. Under suitable conditions, we develop an explicit numerical lower bound on the attainable relative error in terms of the coefficients in the stencil characterising the scheme and the loci.