
Validating Plans with Continuous Effects

Richard Howey and Derek Long
University of Strathclyde, UK

richard.howey@cis.strath.ac.uk derek.long@cis.strath.ac.uk

Abstract

A critical element in the use of PDDL2.1, the modelling lan-
guage developed for the International Planning Competition
series, has been the common understanding of the semantics
of the language. The fact that this has been implemented in
plan validation software was vital to the progress of the com-
petition. However, the validation of plans using actions with
continuous effects presents new challenges (that precede the
challenges presented by planning with those effects). In this
paper we review the need for continuous effects, their seman-
tics and the problems that arise in validation of plans that
include them. We report our progress in implementing the
semantics in an extended version of the plan validation soft-
ware.

1 Introduction

Classical planning research has focussed on logical struc-
ture of plans, with temporal structure confined to order-
ing constraints between activities. With a few notable ex-
ceptions, such as (Vere 1983; Penberthy & Weld 1994;
Laborie & Ghallab 1995; Muscettola 1994), metric tem-
poral structure has not been considered until recently, de-
spite its obvious importance in practical planning prob-
lems. The third International Planning Competition made
temporal planning one of the focal objectives and a num-
ber of planners achieved remarkable success in handling
quite complex metric temporal planning behaviour, includ-
ing MIPS (Edelkamp & Helmert 2000) and LPG (Gerevini &
Serina 2002). Although the introduction of metric temporal
reasoning was a considerable challenge, there remain impor-
tant additional challenges. For example, in the domains used
in the competition, all change was modelled using discrete
effects. There are features of some domains that cannot be
accurately modelled with discrete effects. In this paper we
review the need for continuous effects to adequately model
certain kinds of problems. Planning with continuous effects
was previously discussed at the competition workshop 2003
(Howey & Long 2003) and a more in depth account is in
preparation.

One of the key elements contributing to the success of
the competition was the initial definition of a semantics for
PDDL2.1 allowing a general understanding of what consti-
tutes a valid plan and, crucially, the implementation of an
automatic plan validator, VAL. Over 5000 plans were gen-

erated by entrants to the competition, so it was clearly es-
sential, for evaluation of the results alone, to have an auto-
matic validator. In fact, the role of VAL in communicating
the practical significance of the semantic definitions to en-
trants should not be underestimated — it was a vital tool in
the development process for all of the competitors. In this
paper we consider the problem of extending VAL to handle
continuous change. We consider the semantics on which this
extension is based and explore the practical problems that
are implied in implementing this to achieve automatic vali-
dation both efficiently and correctly.

2 Actions with Continuous Effects

Various authors have considered the representation of con-
tinuous effects in planning contexts. Pednault (Pednault
1986) proposed an extended representation language in
which actions could initiate continuous processes such as
rotation or linear motion, described by continuous functions
parameterised by time. In Zeno, Penberthy and Weld (Pen-
berthy & Weld 1994) considered actions with continuous
effects described by differential equations for the evolu-
tion of continuously changing values such as fuel. Shana-
han has extended the event calculus to include continuous
change (Shanahan 1990), while proposing it as a model for
planning. A functional representation (Trinquart & Ghallab
2001) of domain models has also been proposed. In this pa-
per we are not too concerned with the precise syntactic rep-
resentation of continuous change, although we supply ex-
amples using PDDL2.1 (Fox & Long 2002), the language
developed for the series of international planning competi-
tions (McDermott & Committee 1998). Instead we concen-
trate on the semantics that underlie the use of continuous
effects.

We assume that time runs on a continuous real time line.
Actions can instantaneously initiate continuous change in
numeric-valued variables. This change will be in effect over
finite intervals within the structure of a plan (we assume
plans are finite structures and execute in finite time). The
description of change is assumed to be given by describing
the instantaneous changes made to the values of derivatives
of variables (with respect to time). The use of derivatives
has two advantages: the changes can be seen as instanta-
neous effects, despite the fact that they lead, indirectly, to
continuous change, and the effects of concurrent actions that

interact in their effects on variables is simplified compared
with models that require explicit statement of the function
describing a variable as a function of time. For example,
the description of the effect of an action of driving between
two locations can be described independently of whether a
concurrent activity changes the velocity of the vehicle. In
addition to the possibility of expressing continuous change
in this way, we also assume that a plan can be constrained
to maintain particular invariant conditions over certain inter-
vals. The need to preserve invariants can arise for various
reasons. In PDDL2.1 invariants can be associated with the
execution of durative actions over the interval of their exe-
cution, but it is also reasonable to suppose that constraints
could express safety conditions required for the successful
execution of a plan, or goals over intervals.

A continuous effect can only affect metric quantities: it is
not possible to change a propositional fluent continuously. A
metric variable that can be changed by a continuous effect is
called a Primitive Numerical Expression (PNE). A durative
action that has a continuous effect on a PNE changes the flu-
ent so that the values taken once the continuous change is ac-
tivated are described by a continuous function of time. That
is if v is changing continuously on an interval [t1, t2] then
for each t′ ∈ [t1, t2] the limit limt→t′v(t) exists and is equal
to v(t′). It is possible for other actions to affect a PNE dur-
ing the interval over which a continuous effect is changing it.
In this case, the compound continuous effect will be decom-
posed into segments of continuous behaviour, punctuated by
points of discrete change. These points can be either dis-
crete changes in the value of the PNE itself, where an action
assigns directly to the PNE, so that the value describes a dis-
continuous behaviour, or can be discrete changes in the rate
of change so that the value describes a piece-wise continu-
ous, but non-differentiable behaviour. The latter case occurs
when an action modifies (instantaneously) the derivative of
a PNE.

For the purposes of validation it is important to observe
that discontinuities, either in the value of a PNE or in its
derivative, can only occur at points corresponding to the in-
stantaneous points of effects of actions — in PDDL2.1 either
the starts or ends of durative actions, or the points of applica-
tion of simple actions. These points are defined by the struc-
ture of a plan, so can be identified before validation needs to
consider continuous effects and can be used to segment the
behaviour of metric quantities within a plan into intervals of
continuous and differentiable behaviour.

3 Syntax of Continuous Effects

A continuous effect of a durative action is written in the fol-
lowing style:

(increase (volume ?v) (* #t (refuel-rate

?p)))

where #t represents the time over which the effect has
been active. However, the whole expression must be inter-
preted as having a special significance that cannot be accu-
rately captured in terms of an instantaneous effect: instead,
the expression should be thought of as identifying a rate of
change for the PNE on its left. In this example the volume

of v is continuously increased at the refuel rate of the fuel
pump p. If the fuel pump delivers fuel at a constant rate
then the volume at any point during refuelling has been in-
creaesed by the time since refuelling started, #t, multiplied
by the refuel rate. If the refuel rate is itself changing then
the behaviour is more complex, described by a differential
equation. It might seem more natural to express this effect
as an assertion of the form

d

dt
(volume ?v) = (refuel-rate ?p)

but this would be inappropriate since there might be addi-
tional actions that affect the value of the volume continu-
ously and concurrently. While it would not be inconsistent
for each of those actions to assert that they had the effect of
increasing volume at some rate, it would be inconsistent for
any of them to assert a specific value for the overall rate of
change of the volume.

Formally continuous effects are written as follows:

(<assign-op-t> <f-head> <f-exp-t>)

where

<assign-op-t> ::= increase

<assign-op-t> ::= decrease

<f-exp-t> ::= (* <f-exp> #t)

<f-exp-t> ::= (* #t <f-exp>)

<f-exp-t> ::= #t

and <f-head> is a PNE and <f-exp> is any expression
(for details see PDDL2.1 (Fox & Long 2002)).

4 Motivation

Before considering continuous effects in more detail, it is
worth reviewing why one should consider it necessary to al-
low for them. Many domains can be modelled adequately
by treating effects that are in reality continuous as though
they were discrete effects at the start or end of a durative
action. Unfortunately, there are problems in which this is
not true and in which a plan can only be created if contin-
uous effects are expressible and properly accounted for. To
demonstrate this let us consider an example in some detail
for the remainder of this section.

Consider a generator that must run continuously for 100
time units, requiring 1 unit of fuel per time unit, but with a
capacity of only 60 units of fuel. Two tanks containing 25
units of fuel are available that can be emptied into the gen-
erator while it is generating, but the volume of fuel in the
generator, which is initially full, cannot exceed its capacity.
Only one tank may be emptied into the generator at a time.
The rate of flow of fuel out of the bottom of tank is gov-
erned by Torricelli’s Law: Water in an open tank will flow
out through a small hole in the bottom with the velocity it
would acquire in falling freely from the water level to the
hole. The volume of fuel in the tank, V , is then shown to be
given by

dV

dt
= 2k(kt −

√
U), (1)

where k is the flow constant of the tank (this depends on the
size of the hole, gravity, etc), U is the initial volume of fuel
in the tank and t is time. At time 0 the tank has volume

Problem
(:objects generator tank1 tank2)

(:init (= (fuel-volume generator) 60)

(= (capacity generator) 60)

(= (fuel-volume tank1) 25)

(= (sqrtvolinit tank1) 5)

(= (flow-constant tank1) 0.2)

(= (fuel-volume tank2) 25)

(= (sqrtvolinit tank2) 5)

(= (flow-constant tank2) 0.4))

(:goal (generator-ran))

(:metric (total-time)))

Figure 2: Encoding in PDDL2.1 of the generator problem.

U and starts to drain. Then by time
√

U
k

the tank is empty
so that these equations are only valid for time values, t, in

[0,
√

U
k

]. The rate at which the tank empties is fast to begin
and then slows to a dribble as it finally empties. A possible
encoding in PDDL2.1 using continuous effects is shown in
figures 1 and 2.

The domain consists of two durative actions. One models
the generator running for 100 time units, with the condition
that the generator must not run out of fuel. The other du-
rative action models the emptying of a tank of fuel into the
generator for a fixed time with the condition that the genera-
tor must not overflow. The square root of the initial volume
of a tank, (sqrtvolinit ?t), is required for the equation
describing the flow of fuel out of the tank. This must be
given in the first instance since PDDL2.1 does not handle
the use of square roots. The square root of the volume of the
tank, (sqrtvol ?t), can then be tracked by a linear func-
tion of time which then can be used to supply the square root
of the initial volume of the tank in the case that the tank is
partially drained and then drained later.

4.1 Calculating a Plan

Now let us consider solving this problem, clearly the first
thing to do is to set the generator running for 100 time units.
So let us start the generator running for 100 time units after
time 0, say at time 1:

1: (generate generator) [100]

...

The generator uses one fuel unit per time unit, so the gen-
erator needs 100 fuel units to generate for 100 time units.
The generator starts with 60 fuel units and each tank has 25
fuel units, so we have 110 fuel units to use, which is good.
We can try to empty both tanks into the generator – but how
long does each tank take to empty? From the definition of
the refuelling durative action and the constants for the first
tank, given in the problem definition, the rate of change of
the volume of fuel of the first tank, V1, is given by

dV1

dt
= 0.08t − 2.

Therefore, the volume of fuel is given by

V1(t) = 0.04t2 − 2t + 25.

-
Time

6Value

0 101
0

60

-15

Figure 3: Graph of (fuel-level generator).

Solving this equation we see that the tank is empty at t =
25. However when the model of refuelling was constructed
for the domain we already observed that the tank becomes
empty at the time given by the square root of the initial vol-
ume of fuel in the tank divided by the flow constant. For a
a planner working with this domain this fact is not obvious.
Similarly the second tank takes 12.5 time units to empty.

Now let us add the refuelling action for the generator, us-
ing the first tank. We will first consider refuelling 5 time
units after the generator has started running.

1: (generate generator) [100]

6: (refuel generator tank1) [25]

...

During the period of refuelling the volume of fuel of the
generator, V , is given by the sum of the effects of the gener-
ator generating and the tank refuelling the generator:

dV

dt
= (−1) + (2 − 0.08t).

Thus

V (t) = −0.04t2 + t + 55 for t in [0, 25],

where t is the local time for the refuelling durative action.
We use the condition that V is 55 at t = 0 since we know that
the generator has already used 5 units of fuel. The refuelling
durative action has an invariant condition that the generator
must not overflow which is given by

−0.04t2 + t + 55 ≤ 60 for t in (0, 25),

which is equivalent to

0.04t2 − t + 5 ≥ 0 for t in (0, 25).

However this condition only holds for values of t in
(0, 6.91] ∪ [18.09, 25) (values to 2 decimal places). So, we
have started to refuel the generator too soon, overflowing
the generator. This is shown in figure 3. What is the earli-
est time that refuelling could occur? Let the volume of fuel
of the generator at the start of refuelling be v0. Then the
volume of fuel in the generator is given by

V (t) = −0.04t2 + t + v0.

The invariant condition for the generator not to overflow is
then given by

0.04t2 − t − v0 + 60 > 0 for t in (0, 25).

Durative actions
(:durative-action generate

:parameters (?g)

:duration (= ?duration 100)

:condition (over all (> (fuel-volume ?g) 0))

:effect (and (decrease (fuel-volume ?g) (* #t 1))

(at end (generator-ran))))

(:durative-action refuel

:parameters (?g ?t)

:duration (<= ?duration (/ (sqrtvolinit ?t) (flow-constant ?t)))

:condition (and (at start (not (refuelling ?g)))

(over all (<= (fuel-volume ?g) (capacity ?g))))

:effect (and (at start (refuelling ?g))

(at start (assign (refuel-time ?t) 0))

(at start (assign (sqrtvol ?t) (sqrtvolinit ?t)))

(increase (refuel-time ?t) (* #t 1))

(decrease (sqrtvol ?t) (* #t (flow-constant ?t)))

(decrease (fuel-volume ?t) (* #t (* (* 2 (flow-constant ?t))

(- (sqrtvolinit ?t) (* (flow-constant ?t) (refuel-time ?t))))))

(increase (fuel-volume ?g) (* #t (* (* 2 (flow-constant ?t))

(- (sqrtvolinit ?t) (* (flow-constant ?t) (refuel-time ?t))))))

(at end (not (refuelling ?g)))

(at end (assign (sqrtvolinit ?t) (sqrtvol ?t)))))

Figure 1: Encoding in PDDL2.1 of the generator domain using durative actions

The roots of this quadratic are

1 ±√−8.6 + 0.16v0

0.08
.

For the refuelling action to occur as soon as possible we
want this invariant to only just hold so that the volume
of fuel in the generator is at capacity. This occurs when
v0 = 8.6

0.16
= 53.75, and from this we know the generator

must have been running for 6.25 time units for the volume
of fuel to drop to this amount in the generator. Therefore
the earliest we can refuel using all of the first tank is at time
7.25.

1: (generate generator) [100]

7.25: (refuel generator tank1) [25]

...

Now, we still wish to do another refuelling before the end
of generating, the latest we could do this is at time 88.5 in the
plan. However the volume of fuel of the generator is −2.5
by this time, meaning, of course, that the generator has since
run out fuel and the plan is not valid. If we wanted to delay
to the last moment then the second refuelling would occur
before time 86, this being the time when the generator runs
out of fuel which can be deduced from the rate at which fuel
is consumed and the previous volume of fuel since the last
refuelling. So our final plan could be

1: (generate generator) [100]

7.25: (refuel generator tank1) [25]

85.99: (refuel generator tank2) [12.5]

The volume of fuel of the generator for this plan is shown
in figure 4.

It would be interesting to see a planner capable of pro-
ducing a plan that includes the earliest or latest possible re-

-Time

6Value

0 101
0

60

Figure 4: Graph of (fuel-level generator).

fuelling, although such a plan cannot be considered very ro-
bust. A better behaviour would be to push the refuelling
actions comfortably into the generating interval.

4.2 Calculating a Plan Using Bounds

A more feasible approach to calculating a plan for a problem
involving continuous effects may be to use linear approxi-
mations on the continuous effects, in particular the use of
step functions. For the generator problem, if we reason that
a tank is only going to add 25 fuel units then we can wait un-
til the generator has used up 25 fuel units, so that we know
that no overflow could occur. The first refuelling would then
take place at time 26. Next, the second refuelling can occur
as soon as the first refuelling has finished, since we know
that the volume of fuel in the generator is 35, so that no
overflow could occur. Figure 5 shows the volume of fuel of
the generator for this plan.

1: (generate generator) [100]

26: (refuel generator tank1) [25]

-Time

6Value

0 101
0

60

Figure 5: Graph of (fuel-level generator).

51.01: (refuel generator tank2) [12.5]

Now consider what was involved in constructing this plan.
The volume of fuel in the generator was calculated as a
function of time from the differential equation governing its
behaviour, but with no other continuous effects interacting
with the volume of fuel. We then considered the refuelling
action for the first tank on its own, solving the differential
equation in order to figure out how long it takes to empty the
tank. A step function was then used to approximate the refu-
elling action, adding all of the fuel at the start of the durative
action. The linear function for the generator fuel volume
was then used to determine when the refuelling given by the
step function could be applied. Similarly with the second
tank of fuel. Notice that we did not use a step function for
the generating action.

If this kind reasoning can be used to produce a plan us-
ing simple calculations to handle linear functions and linear
bounds for non-linear functions then this makes the plan-
ning process much easier. However using linear bounds
can greatly reduce the flexibility of durative actions within a
plan, the more accurate continuous effects can be handled in
the planning process the better the scope of valid plans that
can be produced. In the generator example we saw that the
earliest time a refuelling could occur using the first tank is
at time 7.25. However, using linear bounds for the volume
of fuel in the generator (by way of a step function on the re-
fuelling action), the earliest safe time to refuel is at time 26.
This reduction in flexibility might suggest that no valid plan
exists at all when there are, in fact, many valid plans.

If we attempt to model the fuel-consumption of the gener-
ator with a step function we have a problem: either the fuel
is consumed at the start, which suggests that a tank can sim-
ply transfer its 25 units of fuel to the generator at the start
without exceeding the generator fuel capacity. Alternatively,
if we put the consumption at the end then we cannot refuel
the generator until it has ran out of fuel. In order to solve the
problem we have to have access to an accurate (or at least
a sufficiently accurate) model of the fuel in the generator
throughout its generating time.

5 Semantics of Continuous Effects

We do not attempt to give a formal semantics in this sec-
tion, due to limited space: a formal semantics has been

developed, based on the semantics of discrete durative ac-
tions (Fox & Long 2002). The semantics of discrete durative
actions can be formulated in terms of discrete state changes
at the instants of change, in a familiar state-transition se-
mantic framework, but with the addition of an embedding
of the activity into a real time line. This is a straightfor-
ward extension, except for two important complications in-
troduced by the embedding: one is to explain under what
circumstances the end points of actions (when instantaneous
change occurs) may coincide and the other is to account for
the way in which the interaction between action execution
and invariants is handled. The first of these issues is re-
solved by preventing action end points from coinciding if the
postconditions of one of the end points include any proposi-
tion that is included in the preconditions of the other. This
constraint implies that propositions are treated like shared
memory in multi-processing operating systems, with actions
analogous to separate processes. An action precondition de-
mands read-access to all of the atomic propositions it in-
cludes, while action postconditions demand write-access to
all of the atomic propositions they refer to. A propositional
variable can support multiple coincident read-accesses, but
a write-access prevents any other access to the propositional
variable. An action can, of course, refer to the same propo-
sition in both its pre- and postconditions, just as single pro-
cess can read and then write to a memory, because its own
memory accesses are sequenced. An alternative approach,
adopted by McDermott (McDermott 2003) and Bacchus and
Ady (Bacchus & Ady 2001), is to allow actions that occur
simultaneously to be sequenced. We consider this approach
difficult to justify, since it is not clear how, in execution,
simultaneous actions could actually be guaranteed to exe-
cute in a specific order. A plan contains a finite number of
actions. Thus, the management of invariants is handled by
observing that it is only necessary to confirm each invari-
ant between the finitely many discrete points of change that
occur during the interval to which it applies.

The introduction of continuous change creates two further
complications: continuous changes can interact and contin-
uous change can affect values appearing in invariant condi-
tions during the period of continuous change. A semantic
account can be constructed using a timed hybrid automaton
model, such as Henzinger’s (Henzinger 1996). This model
is attractive because it is close to the familiar state transi-
tion semantics for planning problems. The key extension to
the discrete temporal model is that interacting processes are
described by systems of differential equations, whose effects
can be resolved at the conclusion of each interval over which
they act uninterrupted. Invariants can be checked by consid-
ering the functions describing the change in PNEs over the
same intervals. This is illustrated in figure 6. In (1) we show
how the interval of a durative action effecting continuous
change can be handled by updating the continuously chang-
ing PNEs discretely at the end of the interval and checking
any invariants at this point. Each invariant check is respon-
sible for confirming correctness over the preceding interval
of continuous change. In (2) we show that if another ac-
tion end point punctuates the interval then the evaluation of
continuous effects and invariant checks are managed at each

Invariant Check

Invariant Check

Time

Start

Time

Start

Some Action

f

Time

0 T

End

Continuous Update

End

Continuous Update

Invariant Check

Continuous Update2)

1)

3)

Figure 6: Durative action with continuous effects. Graph
shows the values of a PNE, f , which is changing continu-
ously during the execution of the durative action

point of change. Part (3) illustrates how discrete affects can
arise, due to parallel activity during the intervals, breaking
the continuous change into piece-wise continuous differen-
tial components.

6 Interacting Continuous Effects

There may be a number of continuous effects active at one
time each of which additively modifies the derivative of a
PNE. If a PNE has its derivative modified more than once
then the derivative is given by the sum of the contributions.
The rate of change of a PNE may also depend on the value of
other PNEs which may themselves be continuously chang-
ing. The values of all the changing PNEs are thus given by
a system of differential equations:

dfi

dt
= gi(f1, f2, · · · , fn) i ∈ {1, 2, · · · , n},

where the fi are the PNEs and the gi are some functions
depending on the set of continuously changing PNEs. PNEs
that are not changing continuously are treated as constants.
For example consider the following continuous effects

increase (distance ?c) (* #t (speed ?c))

increase (speed ?c) (* #t (acceln ?c))

which describe the motion of a car driving. The rate of
change of the PNE for the distance of the car is given by
the PNE for the speed of the car. The PNE for the speed
of the car is in turn given by the PNE for the acceleration
of the car. To solve these differential equations to give the
functions of time describing the motion of the car we must
firstly determine the acceleration, then the speed, and lastly
the distance of the car.

Solving the system of differential equations that can arise
is considered in sections 8.1 and 8.2.

7 Invariants

Continuous effects have their most significant effect on the
validation of plans when they interact with invariants. An in-
variant condition must be evaluated on an interval by check-
ing that the continuously changing PNEs that appear within
it do not assume values that lead to a violation of the invari-
ant.

7.1 One-Clause Invariants

An invariant comparison containing PNEs that are contin-
uously changing can always be expressed as a function of
time, t, that must be greater than zero (or perhaps greater
than or equal to zero. If equality is used then the difference
between the left hand side and the right hand side cannot
vary for the invariant to hold). For example

t2 + 2t + 2 > 0 for t ∈ (0, 5)

may be an invariant condition to check. If the invariant ex-
pression is linear in time we can simply evaluate the expres-
sion at the end points of the interval to confirm the condition
holds. However checking an invariant condition with a non-
linear expression in time it is no longer sufficient to check
the condition at end points only. An invariant comparison
F (t) > 0 on (0, T), where F is some continuous function
in time, t, can be checked by one of the following methods:

1. Check that F (0) ≥ 0 and F (T) ≥ 0 and also check that
the value at any stationary points in (0, T) is greater than
zero.

2. Check that F (0) ≥ 0 and F (T) ≥ 0 and also check to see
if any roots exist in (0, T). (If the inequality is non-strict
then care is needed in case of repeated roots).

Method 2 is chosen to check non-linear invariants in VAL.
The key to the problem of checking invariants that are com-
parisons with non-linear expressions in t is one of finding
the roots of a non-linear function. This problem is, in gen-
eral, non-trivial, even in the case of polynomials. There are
many algorithms to find the roots of equations but we need
to be sure of finding all the roots in a given interval in ev-
ery possible case. It is therefore necessary to impose certain
restrictions on the invariants that may be expressed to guar-
antee that they may be verified on a given interval.

We are initially only considering invariant comparisons
which depend on continuously changing PNEs that are given
by polynomials in t. For one-clause invariant comparisons
which are given by an inequality that is strict we are in fact
only interested in the existence of real roots on a given open
interval. Finding the roots of polynomials is considered in
section 8.3.

7.2 Invariants with Disjunctions

Let A and B be two atoms that depend on time then consider
the two conditions

A(t) ∨ B(t) for all t ∈ (0, T), (2)

(A(t) for all t ∈ (0, T)) ∨ (B(t) for all t ∈ (0, T)) . (3)

It could be the case that A(t) is only satisfied on (0, 3

4
T]

and B(t) on [1
4
T, T) so that condition (2) is satisfied but

���������������

-t

6
h2

h1

f

0 t0 T

Figure 7: Example of h1, h2 and f . If f is required to be
above h2 or below h1 across (0, T), then the value at t0
breaks the constraint.

condition (3) is not. Clearly the two interpretations are not
equivalent. Suppose a durative action continuously updates
a PNE, f , and there is a concurrent action (possibly the same
action) with an invariant condition of the form:

f(t) < h1(t) ∧ f(t) > h2(t) for all t ∈ (0, T),

where h1 and h2 are some functions that may depend on
other functional expressions. The condition can then be
checked by checking each comparison separately. However
suppose the condition is of the form:

f(t) < h1(t) ∨ f(t) > h2(t) for all t ∈ (0, T),

then each comparison cannot be considered separately.
In the simple case where h1 and h2 are constants and f

is linear we can no longer simply check the end points of
h1 − f and f − h2 to be greater than zero. This is because
we could have (h1 − f)(0) > 0 and (f − h2)(T) > 0
which satisfies the condition at 0 and T but there could
exist a point t0 ∈ (0, T) such that (h1 − f)(t0) < 0 and
(f − h2)(t0) < 0 (see figure 7).

As an example of an invariant with disjunction consider
the following:

(t2 − 9t + 14 ≥ 0) ∨ ((t − 1 > 0) ∧ (−t + 8 ≥ 0))

for t in (0, 10). We must find the values of t in (0, 10) each
disjunct is satisfied on then take the union of the two and see
if the result covers (0, 10), which implies the result is in fact
equal to (0, 10). The first disjunct, (t2−9t+14 ≥ 0), is sat-
isfied for values of t in (0, 2]∪[7, 10). The second disjunct is
not so straightforward, the condition (t − 1 > 0) is satisfied
on (1, 10) and (−t + 8 ≥ 0) is satisfied on (0, 8] then taking
the intersection of the two we have the disjunct being sat-
isfied for values of t in (1, 8]. Now taking the union of the
values that the two disjuncts are satisfied on gives (0, 10)
which indeed covers (0, 10) showing that the invariant con-
dition holds.

In general an invariant condition can be considered as
a proposition in DNF that must hold over an interval, say
(0, T). To confirm the invariant, we must then find a set of
intervals, C, covering (0, T), such that a disjunct is satisfied
in each interval in C. This is simplified if it is possible to find
all the roots of all the continuous functions involved, since
these points can be used as the end points of the sub-intervals

forming the cover. In the case of polynomials this can be
achieved (finding the roots of polynomials is considered in
section 8.3). Even in the case of polynomials of polynomi-
als, the degree of the largest polynomial is bounded giving
us a tractable collection of roots and a tractable problem for
validation. Using this approach means that our validation
of plans cannot be more accurate than the degree of preci-
sion used in the solver. However in practice, all numerical
testing, even for linear functions, is subject to the degree of
precision supported by our machines (always finite), so the
problem of plan validation must always be qualified by an
observation of the limitation on the accuracy with which nu-
meric constraints can be checked.

A detail of finding a covering of (0, T) is important, let us
call an exact covering of (0, T) fractured if there is a value,
x, other than 0 or T , such that for every I ∈ C if x ∈ I
then x is an end point of I . (The intuition is that no interval
spans between the left and right of the interval across x). If
the only exact coverings that exist to satisfy a given invariant
are fractured at x then this implies that at x the invariant flips
from being satisfied in one way to being satisfied in another.
This flip could depend on arbitrarily precise synchronisation
of the activities governing the continuous change and this is
unlikely to be within the power of any physical executive.
For this reason, we might prefer to discount such plans as
unrobust. This issue is also related to numeric precision in
handling values, both in a potential executive and in the ma-
chinery expected to validate a plan.

Two things (other than the form of the functions that de-
scribe the behaviours of the PNEs that appear in the proposi-
tion) affect the complexity of invariant checking: one is the
complexity of the functions that appear in the proposition it-
self and the other is whether or not there is more than one
disjunct. The former is restricted to be (in ascending order
of complexity) either simple linear functions, polynomials
or other functions.

8 Solving Differential Equations and

Evaluating Invariants

In this section we consider approaches to solving a system
of differential equations (sections 8.1 and 8.2), which arises
when validating a plan with continuous effects. Then find-
ing the roots of polynomials is addressed (section 8.3) as
required for evaluating invariant conditions. Then finally,
a general method (section 8.5) using the solutions to these
problems is presented for evaluating invariants that depend
on continuously changing PNEs.

8.1 Numerical Methods

It is not possible to solve each system of differential equa-
tions analytically that may arise from continuous effect ex-
pressions in PDDL2.1. The subject of finding analytic solu-
tions to a system of differential equations has a huge litera-
ture and will not be discussed in any detail in this paper. An-
alytic methods fall well short of a complete solution and can
be quite complicated, too specific, too long or non-existent
for some systems of differential equations. Therefore an-
alytic methods are not well suited to complicated systems

of differential equations that may arise naturally in a math-
ematical model. For these reasons numerical methods are
very popular among scientists working with mathematical
models described by differential equations. The output of
numerical methods is a finite set of points which is close
to the solution curve and ideally to within a given degree
of accuracy. If this could be achieved then it would be sim-
ple to evaluate invariant conditions by considering this set of
points. Thus if we could achieve this for our system of dif-
ferential equations then this would be ideal. Unfortunately
a method to do this infallibly to within a degree of accu-
racy for such a general system of differential equations sim-
ply does not exist. The vast amount of work on the subject
is a testament to this. A more realistic and desirable result
would be a set of simple restrictions that could be imposed
on the system of differential equations that could be easily
checked whilst allowing sufficient expressibility of differen-
tial equations. These restrictions could then guarantee that
an efficient and infallible method could be used to obtain a
solution to within a degree of accuracy (or at least the detec-
tion that no solution exists). However to the authors’ knowl-
edge and disappointment no such result exists. Numerical
methods are ideal if the system of differential equations is
known and fixed (to within certain parameters), since then
numerical methods can then be applied and guaranteed to
find the an approximate solution to within a degree of ac-
curacy. In our general setting we do not have this luxury
so numerical methods are not appropriate, we therefore con-
sider certain classes of systems of differential equations that
may be solved analytically whilst allowing for sufficiently
interesting planning problems.

8.2 Analytic Methods

A PNE can change as a polynomial function of time or even
a more complex function of time, due to more complex de-
pendencies arising in the expression on the right-hand-side
of the differential equation governing its evolution. In par-
ticular for a non-linear function to arise, the right-hand-side
must include one or more of the PNEs that appear as left-
hand-side elements (including the PNE that is governed by
this equation itself).

For example consider the simple case where a PNE, f ,
varies with the rate of change given by:

df

dt
= f

and f has a value of f0 for t = 0. Then the value of f is
given by

f(t) = f0e
t.

The following proposition shows that the values taken by
PNEs are given by polynomials if certain restrictions are im-
posed on the differential equations.

Proposition 8.1 Let F = {f1, f2, . . . , fn} be a finite set of
PNEs which are changing continuously on the interval [0, T]
given by

dfi

dt
= gi(f1, f2, . . . , fn) for all i ∈ {1, 2, . . . , n}

where gi is some function depending on F . The function
gi is restricted to addition, subtraction, multiplication and
division on its terms and division by a PNE in F is not per-
mitted. If the rate of change of no PNE depends on itself
(either directly or indirectly) then the value of every PNE on
[0, T] is given by a polynomial in t.

Proof. Follows by induction on the dependency structure.

If the conditions in Proposition 8.1 were relaxed to allow
division by a functional expression then a PNE could take
values given by a natural logarithm. If the dependencies
could contain loops then exponential functions could occur
as shown above, as well as trigonometric functions and so
on.

Notice that determination of the structure of the depen-
dency sets can be carried out automatically, using syntac-
tic analysis of the expression parse trees. To achieve this,
a graph is constructed using PNEs as vertices and with di-
rected edges between the expressions on the left of contin-
uous updates and those on the right of the same expression.
If this graph is acyclic (which is easily tested) then the dif-
ferential equations can all be solved with polynomials. The
only limitation is that this dependency analysis carried out
purely syntactically can be conservative, in that it might
be the case that dependencies actually simplify away if ex-
pressions can be symbolically manipulated to cancel terms.
Since this kind of manipulation is non-trivial, we must as-
sume that the dependencies discovered by syntactic analy-
sis could be more restrictive than the true dependencies. It
should also be observed that the dependency analysis must
be considered on a case-by-case basis: each interval over
which continuous change is active must be separately anal-
ysed because the domain might include expressions that, in
principle, allow cycles of dependency to be constructed, but
no cycles might actually appear amongst effects active in the
plan itself.

The complexity of the differential equations that can be
expressed far exceeds the practicality of solving them and
indeed the feasibility. It is therefore necessary to impose
certain restrictions on the differential equations to guarantee
that they can be solved.

8.3 Polynomial Root Finding

As discussed in section 7 to evaluate the truth values of in-
variants it is necessary to find the roots of a polynomial on
a given interval to within a given degree of accuracy. In the
case of an invariant consisting of a single comparison then
it is sufficient to determine only the existence or not of the
roots on a given interval.

There are many methods for finding the roots of polyno-
mials, such as Newton’s Method and Graeffe’s Method, to
name just two, which have their advantages and disadvan-
tages. It is a requirement of VAL to validate plans so it is
not acceptable to miss the roots of polynomials which then
may give the incorrect truth value of an invariant. We are
then only concerned with implementing methods that will
find the roots of polynomials infallibly (if it cannot guaran-
tee to find the roots on a given interval then this should be
detected).

For VAL we have chosen to implement a method based on
Descartes’ Rule of Signs for several reasons: it provides an
infallible solution, it is efficient, and it is relatively simple to
implement. This method is subject to the polynomial con-
taining no repeated roots. Fortunately for any given polyno-
mial we can obtain another polynomial with the same roots
but without any repeated roots. This is achieved by divid-
ing the polynomial by the greatest common divisor of it-
self and its derivative. To find the greatest common divisor
of two polynomials the Euclidean (a.k.a. Euclid’s or divi-
sional) algorithm can be used, although the accuracy of the
coefficients must be handled carefully to avoid any spuri-
ous results due to rounding in the calculations. The method
that we have implemented is based on Rouillier and Zimmer-
mann’s algorithm (Rouillier & Zimmermann 2001), which is
itself based on algorithms from Collins and Akritas (Collins
& Akritas 1976).

8.4 Approximation and Power Series

On a given interval of time where there are a number of
PNEs changing continuously, as defined by a system of dif-
ferential equations, the PNEs may be given by arbitrary non-
linear functions of time as mentioned in section 6. These
non-linear functions of time may then appear in invariant
conditions requiring that the functions be analysed for roots
on a given interval, possibly to within a given degree of ac-
curacy. It is then desirable to approximate the function in
a form that can be easily used with numerical methods to
compute the roots. We, of course, want to approximate the
functions by polynomials, and it is a well known result that
any continuous function on a closed bounded interval can
be uniformly approximated on that interval by polynomials
to any degree of accuracy. The most well known method of
approximating continuous functions where the derivatives of
all orders exist is the use of Taylor series. The Taylor series
of a function can be used to obtain a polynomial approxi-
mation to within a given degree of accuracy. So, given a
non-linear function of time appearing in an invariant condi-
tion we can find a polynomial approximation and proceed
to check the invariant using polynomial root finding tech-
niques. We have used this approach in VAL to handle simple
exponential functions.

8.5 Plan Validation

Plan validation may be broken into segments of continuous
change punctuated by a finite number of discrete changes, as
discussed in section 5. These segments are given by inter-
vals of time with the continuous change defined by a system
of differential equations (as in proposition 8.1), F , and a
set of conditions, Inv, which must hold over the interval.
Each interval is considered by its local time written [0, T].
To evaluate the conditions on the given interval we use the
following steps.

Step One In our answer we are assuming that we can find
an analytic solution to the system of differential equations.
To ensure we can find an analytic solution we impose cer-
tain conditions on the system of differential equations, such
as the conditions in proposition 8.1 so that the solutions are

polynomial. So for each i = 1, · · · , n we have fi expressed
in terms of t where fi is continuous on [0, T] and has deriva-
tives of all orders.

Step Two For each atom in a proposition in Inv which is
a comparison depending on F such as h1(t) > h2(t) for
some functions h1 and h2, we rearrange the comparison to
be zero on the right hand side, h1(t) − h2(t) > 0. Then
letting g(t) = h1(t) − h2(t) we can find a polynomial ap-
proximation for g to within a given degree of accuracy as
mentioned in section 8.4. Thus each comparison is given by
a polynomial and a boolean value to whether it is strict or
non-strict. (For equality comparisons the polynomial must
equal 0 and will be considered as a boolean atom for the
purposes of this method).

Step Three For each A in Inv we determine whether it
holds on (0, T) as follows:

• Boolean If A is a boolean condition then its truth value is
immediate.

• Comparison If A is a comparison with polynomial g then
we can isolate the roots of g (if any exist). The com-
parison holds on (0, T) if the end points of g are greater
than zero and no roots exist on (0, T). Evaluation of g is
needed at key points in (0, T) in the case of a non-strict
comparison (in case of repeated roots) or if the end points
evaluate to zero.

• Conjunction If A is a conjunction A = A1∧A2∧· · ·∧Ak

for some k ∈ N, then we determine if A holds on (0, T)
by checking each conjunct in order, 1 to k, as given by
these rules (depending on whether it is a boolean, com-
parison etc.) to whether it holds for all values on (0, T).
If one conjunct does not hold on (0, T) then A does not
hold on (0, T) and the remaining conjuncts need not be
checked.

• Disjunction If A is a disjunction A = A1∨A2∨· · ·∨Ak

for some k ∈ N, then we determine if A holds on (0, T)
as follows. Firstly determine the values of t in (0, T) that
A1 holds on as given below, call it J1. If J1 = (0, T) then
A holds on (0, T). If J1 6= (0, T) then we calculate the
values of t that A2 holds on, J2, then if J1 ∪ J2 = (0, T)

then A holds on (0, T) and so on. If
⋃k

i=1
Ji 6= (0, T)

then A does not hold on (0, T).

Values of t in (0, T) that a disjunct Ai holds on:

• Boolean If Ai is a boolean value then Ai holds on (0, T)
if Ai is true, otherwise it holds on the empty set.

• Comparison If Ai is a comparison then from its corre-
sponding polynomial as given in step two, we firstly find
the roots in (0, T). These roots are used to determine the
end points of a set of intervals that the comparison holds
on. If the comparison is strict then the intervals will be
open, otherwise the interval end points will be closed ex-
cluding 0 and T .

• Conjunction If Ai is a conjunction Ai = B1∧B2∧· · ·∧
Bk for some k ∈ N, then we determine the values of t that
Ai holds on (0, T) as follows. In order, for each Bi deter-
mine the values of t in (0, T) it holds on (by these meth-

ods) call it Ji. The Ji’s are used to calculate
⋂

i=1···k Ji,
and so if there is a conjunct Bj such that

⋂
i=1···j Ji = ∅

then the remaining Ji are not calculated.

• Disjunction If Ai is a conjunction Ai = B1∨B2∨· · ·∨Bk

for some k ∈ N, then we determine the values of t that Ai

holds on (0, T) as follows. In order, for each Bi determine
the values of t in (0, T) it holds on (by these methods) call
it Ji. The Ji’s are used to calculate

⋃
i=1···k Ji, and so if

there is a conjunct Bj such that
⋃

i=1···j Ji = (0, T) then

the remaining Ji are not calculated.

For each conjunction and disjunction it is not always nec-
essary to consider every conjunct or disjunct, therefore in
order to save on calculation time we sort the conjuncts and
disjuncts into order of estimated computational effort.

9 Conclusion

This paper examines the problem of validation of plans with
continuous effects. We have implemented this approach in
an extension of VAL used in the 3rd IPC (Long, Cresswell,
& Howey 2003). Currently, to guarantee the validation of a
plan containing durative actions with continuous effects cer-
tain restrictions have to be met: all continuous effects must
be given by a polynomial or a simple exponential function
of time. This condition implies that the dependency graph
of the rates of change of PNEs has no loops except for self
dependent loops. This condition is automatically checked
and VAL identifies plans that it cannot correctly validate.

In section 8 a general framework was presented to handle
more complicated continuous effects; a more thorough ac-
count is in preparation. Although VAL does not currently
handle a wide range of types of functions, methods have
been developed to do so and these methods have been imple-
mented in the handling of exponential functions. The scope
of the continuous functions that VAL should handle can be
seen as a prerequisite to developing planners capable of pro-
ducing plans with those continuous functions. Currently, to
the authors’ knowledge, the few planners handling continu-
ous effects only consider linear effects. The next logical step
is to develop planners capable of handling non-linear effects
that are given by polynomials. This is now a much more
realistic target with the availability of an automatic plan val-
idation tool, VAL, capable of handling plans with polynomial
effects. The extension of VAL to handle yet more complex
functions at this stage would be considered overkill.

The validation of plans containing continuous effects is
an important first step in making planners capable of plan-
ning with languages that express them. Validation depends
on semantics and cannot be implemented without removing
ambiguities. The availability of a validation tool is a vital
first step for the community in progressing along this path.

References

Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In Pro-
ceedings of IJCAI’01, 417–424.

Collins, G., and Akritas, A. 1976. Polynomial real root
isolation using Descartes’ rule of signs. SYMSAC.

Edelkamp, S., and Helmert, M. 2000. On the imple-
mentation of Mips. In Proc. of Workshop on Decision-
Theoretic Planning, AI Planning and Scheduling (AIPS),
18–25. AAAI-Press.

Fox, M., and Long, D. 2002. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Techni-
cal report.

Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs. In Proc. of 6th Int. Conf.
on AI Planning Systems (AIPS’02). AAAI Press.

Henzinger, T. 1996. The theory of hybrid automata. In
Proc. of the 11th Annual Symposium on Logic in Computer
Science. Tutorial., 278–292. IEEE Computer Soc. Press.

Howey, R., and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2.1 used in the international
planning competition. In Proc. of ICAPS Workshop on the
IPC.

Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. In Proc. of 14th International Joint
Conference on AI. Morgan Kaufmann.

Long, D.; Cresswell, S.; and Howey, R. 2003.
Validator for PDDL2.1 plans. Available at
www.cis.strath.ac.uk/∼rh/val.html.

McDermott, D., and Committee, A. I. 1998. PDDL–the
planning domain definition language. Technical report,
Available at: www.cs.yale.edu/homes/dvm.

McDermott, D. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. In Proc. of Int.
Conf. on Automated Planning and Scheduling (ICAPS’03).

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Zweben, M., and Fox, M., eds., Intelligent
Scheduling. San Mateo, CA: Morgan Kaufmann. 169–212.

Pednault, E. 1986. Formulating multiagent, dynamic-
world problems in the classical planning framework. In
Georgeff, M., and Lansky, A., eds., Proc. of the Timberline
Oregon Workshop on Reasoning about Actions and Plans.

Penberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. In Proc. of 12th National Conf. on AI.

Rouillier, F., and Zimmermann, P. 2001. Efficient isolation
of a polynomial real roots. Technical Report 4113, Rinria.

Shanahan, M. 1990. Representing continuous change in
the event calculus. In Proceedings of ECAI’90, 598–603.

Trinquart, R., and Ghallab, M. 2001. An extended func-
tional representation in temporal planning: Towards con-
tinuous change. In Proc. of ECP-01.

Vere, S. 1983. Planning in time: Windows and durations
for activities and goals. IEEE Trans. on Pattern Analysis
and Machine Intelligence 5.

