Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Investigation of macrocyclisation routes to 1,4,7-triazacyclononanes : efficient syntheses from 1,2-ditosylamides

Stones, G. and Tripoli, Régis and McDavid, Colin L. and Roux-Duplatre, Kewin and Kennedy, A.R. and Sherrington, D.C. and Gibson, C.L. (2008) Investigation of macrocyclisation routes to 1,4,7-triazacyclononanes : efficient syntheses from 1,2-ditosylamides. Organic and Biomolecular Chemistry, 6 (2). pp. 374-384. ISSN 1477-0520

[img]
Preview
PDF
Investigation_of_macrocyclisation_routes.pdf - Final Published Version

Download (291kB) | Preview

Abstract

Two routes to the synthesis of a cyclohexyl-fused 1,4,7-triazacyclononane involving macrocyclisations of tosamides have been investigated. In the first approach, using a classic Richman-Atkins-type cyclisation of a cyclohexyl-substituted 1,4,7-tritosamide with ethylene glycol ditosylate, afforded the cyclohexyl-fused 1,4,7-triazacyclononane in 5.86% overall yield in four steps. The second, more concise, approach involving the macrocyclisation of trans-cyclohexane-1,2-ditosamide with the tritosyl derivative of diethanolamine initially gave poor yields (< 25%). The well-documented problems with efficiencies in macrocyclisations using 1,2-ditosamides led to the use of a wider range of 1,2-ditosamides including ethane-1,2-ditosamide and propane-1,2-ditosamide. These extended studies led to the development of an efficient macrocyclisation protocol using lithium hydride. This new method afforded 1,4,7-tritosyl-1,4,7-triazacyclononanes in good yield (57-90%) from 1,2-ditosamides in a single step. These efficient methods were then applied to the preparation of a chiral cyclohexyl-fused 1,4,7-tritosyl-1,4,7-triazacyclononane (65-70%). This key chiral intermediate was then converted into a copper(II) complex following detosylation and N-methylation. The resulting chiral copper(II) complex catalysed the aziridination of styrene but it did so in a racemic fashion.