Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A multiplex assay to identify 18 european mammal species from mixtures using the mitochondrial cytochrome b gene

Tobe, Shanan S. and Linacre, Adrian M.T. (2008) A multiplex assay to identify 18 european mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis, 29 (2). pp. 340-347. ISSN 0173-0835

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A novel species-specific multiplex to identify 18 common European mammalian species (badger, cat, cow, dog, donkey, fox, goat, guinea pig, harvest mouse, hedgehog, horse, house mouse, human, pig, rabbit, rat, red deer and sheep), many of which are often associated with forensic investigations, has been developed. The assay is based on the mitochondrial cytochrome b gene, which is commonly used in species identification and phylogeny studies. Areas of homology and variation were identified and were used to create universal and species-specific primers. The species-specific primers were designed such that they will only react with the species for which they were designed. Two primer sets were designed for each species making the test self-confirmatory. All primer sets produced the expected results. The multiplex was balanced at template concentration of 40 000 copies (approximately 1.36 pg). Validation was accomplished by analysing the same sample ten times to determine run variation and several samples for each species to determine between-sample variation. Twenty-eight additional mammalian species were reacted with the multiplex. The multiplex provides, for the first time, a definitive method for identification of species in a forensic context.