Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A hybrid approach for multi-objective combinatorial optimisation problems in ship design and shipping

Olcer, A.I. (2008) A hybrid approach for multi-objective combinatorial optimisation problems in ship design and shipping. Computers & Operations Research, 35 (9). pp. 2760-2775. ISSN 0305-0548

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Numerous real-world problems relating to ship design and shipping are characterised by combinatorially explosive alternatives as well as multiple conflicting objectives and are denoted as multi-objective combinatorial optimisation (MOCO) problems. The main problem is that the solution space is very large and therefore the set of feasible solutions cannot be enumerated one by one. Current approaches to solve these problems are multi-objective metaheuristics techniques, which fall in two categories: population-based search and trajectory-based search. This paper gives an overall view for the MOCO problems in ship design and shipping where considerable emphasis is put on evolutionary computation and the evaluation of trade-off solutions. A two-stage hybrid approach is proposed for solving a particular MOCO problem in ship design, subdivision arrangement of a ROPAX vessel. In the first stage, a multi-objective genetic algorithm method is employed to approximate the set of pareto-optimal solutions through an evolutionary optimisation process. In the subsequent stage, a higher-level decision-making approach is adopted to rank these solutions from best to worst and to determine the best solution in a deterministic environment with a single decision maker.